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Introduction

Euler was the Vrst to study the zeta function, discovering the Euler product (Theorem 2), computing the
value of ζ (n) for positive even integers and negative integers n, and from those calculations conjecturing
the functional equation (Theorem 3) more than 100 years before Riemann [Ayo74]. However, Riemann’s
1859 paper proving the functional equation and connecting the zeros of ζ (s) with the distribution of the
prime numbers has led to its current name.

Our goal will be to introduce the main results concerning the Riemann zeta function and demonstrate its
usefulness in studying the prime numbers, with the intended audience being fellow students in UChicago’s
quarter-long graduate complex analysis course. We will mention some of the analogies between power
series and Dirichlet series. We will also go most of the way towards proving the prime number theorem,
but leave the Vnal steps unproven due to space considerations.

Let us mention some standard conventions. Any series
∑

p or product
∏

p is indexed over the prime numbers
in increasing order. The letter Ω denotes a domain, i.e., a connected open subset Ω ⊆ C. Unless otherwise
speciVed, log(z) refers to the principal branch of the logarithm, deVned on the slit plane C \ (−∞, 0]. Lastly,
for conciseness we sometimes speak of a subset of C by its deVning equation or inequality – for example,
the unit circle |z | = 1, or the half-plane Re(z) > 1.

Basic Results

DeVnition. The Riemann zeta function ζ (z) is deVned for Re(z) > 1 by the formula

ζ (z) =
∞∑
n=1

1
nz
.

Recall that the notation nz just means ez log(n). Note that the series converges absolutely in the given region:
for z = x + iy with x > 1, we have

∞∑
n=1

∣∣∣∣∣ 1nz
∣∣∣∣∣ = ∞∑

n=1

∣∣∣∣∣ 1
nxniy

∣∣∣∣∣ = ∞∑
n=1

∣∣∣∣∣∣e−iy log(n)

nx

∣∣∣∣∣∣ = ∞∑
n=1

1
nx
≤

∫ ∞

1

1
tx

dt =
[
t1−x

1 − x

]∞
1
=

1
x − 1

.

Thus ζ (z) is indeed deVned for Re(z) > 1.



DeVnition. The von Mangoldt function Λ(n) is a function on the positive integers deVned by

Λ(n) =

log(p) if n = pk for some prime p and integer k ≥ 1, and

0 otherwise.

This function will show up later, but for now, we are only interested in the fact that∑
d |n

Λ(d) =
∑
p

(
# of powers of p
that are ≤ n

)
log(p) = log(n).

Theorem 1. The Riemann zeta function is analytic on Re(z) > 1, and on this region, we have

ζ ′(z) = −
∞∑
n=1

log(n)
nz
,

ζ ′(z)
ζ (z)

= −

∞∑
n=1

Λ(n)
nz
.

Proof. Recall the following basic result of complex analysis (see, e.g., [Sch14, p.60], [Lan99, pp.156-157]):

Let fm : Ω→ C be a sequence of analytic functions. If fm converges uniformly on compact subsets
to a function f , then f is analytic, and for all k ≥ 1 we have that f (k )m converges to f (k ) uniformly
on compact subsets.

In our situation, we let Ω be the half-plane Re(z) > 1, let f be ζ , and let fm be the partial sums

fm (z) =
m∑
n=1

1
nz
.

By the Weierstrass M -test, for fm to converge uniformly to f on a region S ⊆ C, it will be suXcient to
have a uniform bound supz∈S |

1
nz | ≤ Mn for each n ≥ 1 such that

∑∞
n=1 Mn converges.

Any compact subset K ⊂ Ω is contained within a closed half-plane Re(z) ≥ c for some c > 1, so that for
any z = x + iy ∈ K , we have | 1nz | =

1
nx ≤

1
nc . Thus we have a uniform bound supz∈K |

1
nz | ≤

1
nc , and we

know that ζ (c) =
∑∞
n=1

1
nc converges because c > 1, so we conclude that fm converges to f uniformly on K .

Applying the cited result, we have that ζ is analytic on Re(z) > 1, and that the derivatives

f ′m (z) =
d
dz

m∑
n=1

1
nz
=

m∑
n=1

d
dz

(e−z log(n)) = −
m∑
n=1

log(n)
nz

converge uniformly on compact sets to ζ ′(z), so that for Re(z) > 1,

ζ ′(z) = −
∞∑
n=1

log(n)
nz
.

This series is absolutely convergent for Re(z) > 1, since

∞∑
n=1

∣∣∣∣∣ log(n)nz

∣∣∣∣∣ = ∞∑
n=1

log(n)
nRe(z )

= −ζ ′(Re(z))

which is of course Vnite since ζ is analytic. Finally, note that 0 ≤ Λ(n) ≤ log(n) for all n, so the series

∞∑
n=1

Λ(n)
nz
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also converges absolutely for Re(z) > 1. Thus, we can arbitrarily rearrange the doubly-indexed sum( ∞∑
k=1

1
kz

)
·

( ∞∑
d=1

Λ(d)
dz

)
=

∞∑
k=1

∞∑
d=1

Λ(d)
(kd)z

,

such as by grouping into terms where kd = n:( ∞∑
k=1

1
kz

)
·

( ∞∑
d=1

Λ(d)
dz

)
=

∞∑
n=1

( ∑
kd=n

Λ(d)
)
n−z =

∞∑
n=1

(∑
d |n

Λ(d)
)
n−z =

∞∑
n=1

log(n)
nz

= −ζ ′(z)

thereby proving that on Re(z) > 1, we have

ζ ′(z)
ζ (z)

= −

∞∑
n=1

Λ(n)
nz
. �

We now include a brief discussion of inVnite products.

DeVnition. Let an be a sequence of non-zero complex numbers. We say that the inVnite product
∏∞

n=1 an
converges (absolutely) when

∑∞
n=1 log(an ) converges (absolutely), where log(an ) is allowed to mean a

non-principal branch for Vnitely many an . Observe that to say
∑∞
n=1 log(an ) converges is just to say that

the partial sums
∑N
n=1 log(an ) have a limit, and ez is continuous, so we deVne the value

∞∏
n=1

an = exp
( ∞∑
n=1

log(an )
)
= lim

N →∞
exp

( N∑
n=1

log(an )
)
= lim

N →∞

N∏
n=1

an .

Observe that, as a consequence of this deVnition, a convergent inVnite product cannot have the value 0.

Proposition. Let an be a sequence of complex numbers, with an , −1 for all n. Then

∞∑
n=1

an converges absolutely =⇒
∞∏
n=1

(1 + an ) converges absolutely.

Proof. Recall that, unless otherwise speciVed, log denotes the principal branch, deVned on the slit plane
C \ (−∞, 0]. It is analytic on that region.

So, the function log(1 + z) is certainly holomorphic on the disk |z | < 1, with well-known Taylor series

log(1 + z) = z −
z2

2
+
z3

3
− · · · .

If in fact |z | < 1
2 , then we have

|log(1 + z)| ≤ |z | + |z |2 + |z |3 + · · · =
|z |

1 − |z |
≤ 2|z |.

If
∑∞
n=1 |an | converges, then for some N we have |an | < 1

2 when n ≥ N , so that |log(1 + an )| ≤ 2|an | for all
n ≥ N , so that

∑∞
n=1 |log(1 + an )| converges, so that

∏∞
n=1(1 + an ) converges absolutely. �

Theorem 2 (Euler product). For Re(z) > 1, we can express ζ (z) as the following inVnite product:

ζ (z) =
∏
p

(
1 −

1
pz

)−1
.
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Proof. It is clear from the deVnition that a product P =
∏∞

n=1 an converges if and only if the product
Q =

∏∞
n=1 a

−1
n converges, and if they do converge, we haveQ = P−1. By our proposition above, the product∏

p

(
1 −

1
pz

)
converges absolutely for Re(z) > 1 because∑

p

∣∣∣∣∣ 1pz
∣∣∣∣∣ =∑

p

1
pRe(z )

≤

∞∑
n=1

1
nRe(z )

= ζ (Re(z)).

Therefore the product ∏
p

(
1 −

1
pz

)−1
is also absolutely convergent. Since Re(z) > 1, for any prime p we certainly can write(

1 −
1
pz

)−1
=

∞∑
k=0

1
pkz
,

which is an absolutely convergent series. For any N , we can form the partial product∏
p≤N

(
1 −

1
pz

)−1
=

∏
p≤N

( ∞∑
k=0

1
pkz

)
=

∑
n∈FN

1
nz

where FN is the set of positive integers all of whose prime factors are ≤ N . The rearrangement of the
terms above is justiVed because there are Vnitely many series being multiplied, each of them absolutely
convergent. Clearly, we have at least that 1, 2, . . . , N ∈ FN , so that∣∣∣∣∣ζ (z) − ∏

p≤N

(
1 −

1
pz

)−1∣∣∣∣∣ = ∣∣∣∣∣ζ (z) − ∑
n∈FN

1
nz

∣∣∣∣∣ ≤ ∞∑
m=N +1

1
mRe(z )

.

But this quantity must go to 0 as N → ∞ because the series ζ (Re(z)) =
∑∞

k=1
1

kRe(z ) is convergent. Therefore,
for Re(z) > 1,

ζ (z) = lim
N →∞

∏
p≤N

(
1 −

1
pz

)−1
=

∏
p

(
1 −

1
pz

)−1
. �

Corollary. The Riemann zeta function ζ (z) has no zeros in the region Re(z) > 1.

Proof. A convergent inVnite product cannot be zero. �

Corollary. The sum of the reciprocals of the primes,
∑

p
1
p , diverges.

Proof. As we already argued in the proof of the theorem, for any N , we have that

N∑
n=1

1
n
≤

∏
p≤N

(
1 −

1
p

)−1
.

Taking logarithms of both sides, we have

log
( N∑
n=1

1
n

)
≤ −

∑
p≤N

log
(
1 −

1
p

)
.
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By the Taylor expansion for log(1 + z), valid for |z | < 1, we have

− log
(
1 −

1
p

)
=

∞∑
k=1

1
kpk
,

and observe that
∞∑
k=1

1
kpk

≤
1
p
+

1
2p2

( ∞∑
m=0

1
pm

)

=
1
p
+

1
2p2

(
1 −

1
p

)−1
=

1
p
+

1
2p(p − 1)

<
1
p
+

1
p2
.

Therefore

log
( N∑
n=1

1
n

)
≤

∑
p≤N

1
p
+

∑
p≤N

1
p2
≤

∑
p≤N

1
p
+ ζ (2)

and because log(
∑N
n=1

1
n )→ ∞ as N → ∞, we must also have that

∑
p≤N

1
p → ∞. �

Even with these basic results, it is easy to see that the Riemann zeta function is a powerful tool for
understanding the prime numbers.

The Gamma Function

We attempt to provide a quick but rigorous introduction to the gamma function. First, we need a technical
result which is termed “the diUerentiation lemma” in [Lan99, p.409], which we will provide without proof.

Lemma. Let I ⊆ R be an interval, possibly inVnite. Let U ⊆ C be an open set. Let f = f (t , z) be a continuous
function on I × U . Assume that

(i) For each compact subset K ⊂ U , the integral
∫
I f (t , z)dt is uniformly convergent for z ∈ K.

(ii) For each t ∈ I , the function z 7→ f (z , t) is analytic.

Let F (z) =
∫
I f (t , z)dt. Then we have that F is analytic on U , d

dz f (t , z) satisVes the same hypotheses as f , and

F ′(z) =
∫
I

d
dz

f (t , z)dt .

DeVnition. The gamma function Γ(z) is deVned for Re(z) > 0 by

Γ(z) =
∫ ∞

0
tz−1e−t dt .

Recall that tz−1 just means e(z−1) log(t ). Letting x = Re(z), note that we have

|Γ(z)| ≤
∫ ∞

0
|tz−1e−t | dt =

∫ ∞

0
tx −1e−t dt .

5



Certainly, there is some M such that tx −1e−t ≤ e−t/2 for t ≥ M , and
∫ ∞
M e−t/2 dt converges. Also, we have

lim
ϵ→0+

∫ M

ϵ
tx −1e−t dt ≤ lim

ϵ→0+

∫ M

ϵ
tx −1 dt = lim

ϵ→0+

[
tx

x

]M
ϵ
=

M x

x
.

Thus Γ(z) is indeed deVned for all Re(z) > 0. Moreover, Γ(z) is analytic because it meets the hypotheses of
the diUerentiation lemma, with I = [0,∞),U = the half-plane Re(z) > 0, and f (t , z) = tz−1ez .

Taking the deVnition of Γ(z) and integrating by parts, we have for Re(z) > 0 that

Γ(z + 1) = lim
N →∞

∫ N

0
tze−t dt = lim

N →∞

[
tz (−e−t )

]N
0
−

∫ N

0
ztz−1(−e−t )dt = z

∫ ∞

0
tz−1e−t dt = zΓ(z).

This lets us extend Γ(z) to a meromorphic function on the entire plane by deVning, for Re(z) > −n,

Γ(z) =
Γ(z + n + 1)

z(z + 1) · · · (z + n)
.

Since Γ(z) is analytic on Re(z) > 0, it is easy to see from this that the only singularities of Γ are simple poles
at z = 0, −1, −2, . . ., with the residue of Γ at −n equal to (−1)n/n!

Graphic. I created a plot in Mathematica of |Γ(z)| on the region |Re(z)| ≤ 5, |Im(z)| ≤ 10:

Plot3D[Abs[Gamma[x + I y]], {x, -5, 5}, {y, -10, 10}, PlotPoints -> 25, MaxRecursion -> 5, Boxed
-> False, PlotRange -> {0, 10}, ColorFunction -> ColorData["LightTemperatureMap"], BaseStyle ->
{FontFamily -> "LinuxLibertine", FontSize -> 20}]

Analytic Continuation and Functional Equation of ζ (z)

In this section, we will closely follow the development in [Sny02a] and [Sny02b], which is based on
Riemann’s own proof of these results (though not the one in his original 1859 paper; see [Con11]).

Lemma. DeVne a function θ (z) on the upper half-plane H by the formula θ (z) =
∑
m∈Z eπim

2z . Then

θ
(
−
1
z

)
=
√
−izθ (z).
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Proof. First, observe that the series for θ (z) converges for any z ∈ H, because

|θ (z)| ≤
∑
m∈Z

|eπim
2z | = 1 + 2

∞∑
m=1

e−πm
2 Im(z ) < 1 + 2

∫ ∞

0
e− Im(z ) t dt = 1 +

2
Im(z)

.

Now recall the Poisson summation formula from Fourier analysis (see, e.g., [Lan93, p.244]):

Let f ∈ C2(R), and suppose f and its derivatives are quickly decaying – for example, it is suXcient
to have f , f ′, f ′′ ∈ O((1 + |x |)−2). Let f̂ denote the Fourier transform of f . Then∑

n∈Z

f (n) =
∑
n∈Z

f̂ (n).

For any z ∈ H, the function fz (x ) = eπix
2z meets the hypotheses of this theorem; for example,

| fz (x )| = |eπix
2z | = e−πx

2 Im(z )

decays very quickly, since Im(z) > 0, and similarly for its derivatives. The Fourier transform of fz is

f̂z (x ) =
1
√
−iz

f1/z (x ),

and applying this observation to θ ,

θ (z) =
∑
m∈Z

fz (m) =
∑
m∈Z

f̂z (m) =
1
√
−iz

∑
m∈Z

f1/z (m) =
1
√
−iz

θ
(
−
1
z

)
. �

Remark. The function θ is known as the Jacobi theta function, and this lemma essentially expresses the
fact that it is a modular form of weight 1/2.

Graphic. I created a plot in Mathematica of |θ (z)| on the region |Re(z)| ≤ 5, 0 ≤ Im(z) ≤ 3:

Plot3D[Abs[EllipticTheta[3, 0, Exp[I Pi (x + I y)]]], {x, -5, 5}, {y, 0, 3}, PlotPoints
-> 25, MaxRecursion -> 5, Boxed -> False, PlotRange -> {0, 2}, ColorFunction ->
ColorData["LightTemperatureMap"], BaseStyle -> {FontFamily -> "LinuxLibertine", FontSize -> 20}]

Theorem 3. There exists a meromorphic continuation of ζ (z) to the entire plane, analytic everywhere except
for a simple pole at z = 1, and it satisVes the functional equation

Γ( z2 )π
−z/2ζ (z) = Γ( 1−z2 )π−(1−z )/2ζ (1 − z).

More simply, letting ξ (z) = π−z/2Γ( z2 )ζ (z), we have that ξ (z) = ξ (1 − z).
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Proof. Recall that the deVnition of the gamma function for Re(z) > 0 is

Γ(z) =
∫ ∞

0
tz−1e−t dt .

Making a change of variables t 7→ n2πt , we obtain

n−2zπ−z Γ(z) =
∫ ∞

0
tz−1e−πn

2t dt .

We would like to sum both sides over n ≥ 1, and interchange the sum and integral. However, we need
to check that this is allowed. Interchanging a sum and integral is just a special case of Fubini’s theorem.
Letting x = Re(z), Fubini’s theorem requires us to check that

∞∑
n=1

∫ ∞

0
|tz−1e−πn

2t | dt =
∞∑
n=1

∫ ∞

0
tx −1e−πn

2t dt =
∞∑
n=1

n−2x π−x Γ(x ) = ζ (2x )π−x Γ(x ) < ∞

which is true for x > 1
2 . Thus, in the region Re(z) > 1

2 , we have

ζ (2z)π−z Γ(z) =
∫ 1

0

1
2
(θ (it) − 1)tz

dt
t
.

Observe that we have rearranged the powers of t slightly; however it is of no real consequence, other than
to make our computations slightly neater below. Also, this is the traditional form of a Mellin transform.

Now we have that

ζ (2z)π−z Γ(z) =
∫ ∞

0

1
2
(θ (it) − 1)tz

dt
t

=

∫ 1

0

1
2
(θ (it) − 1)tz

dt
t
+

∫ ∞

1

1
2
(θ (it) − 1)tz

dt
t

(change of variables) =

∫ ∞

1

1
2
(θ (−1/it) − 1)t−z

dt
t
+

∫ ∞

1

1
2
(θ (it) − 1)tz

dt
t

(lemma about θ ) =

∫ ∞

1

1
2
(t1/2θ (it) − 1)t−z

dt
t
+

∫ ∞

1

1
2
(θ (it) − 1)tz

dt
t

=

∫ ∞

1

1
2
(θ (it) − 1)(t1/2−z + tz )

dt
t
+

∫ ∞

1

1
2
(−t1/2−z − t−z )

dt
t

= −
1

2( 12 − z)
−

1
2z

+
∫ ∞

1

1
2
(θ (it) − 1)(t1/2−z + tz )

dt
t

But the right side is deVned, and indeed analytic, on all of C except for its simple poles at z = 0 and z = 1
2 .

This is by the “diUerentiation lemma” cited earlier. The simple pole at z = 0 is contributed from the factor
of Γ(z) on the left side, so the above equation deVnes an analytic continuation of ζ (z) to the entire plane
except for a simple pole at z = 1, which by construction satisVes this functional equation since the left side
is symmetric under changing z 7→ 1

2 − z. �

Observe that the functional equation immediately implies that ζ (z) has simple zeros at the negative even
integers −2, −4, . . . to cancel out the simple poles of Γ(z), and moreover, that there are no other zeros
outside of the region 0 ≤ Re(z) ≤ 1 because we proved that ζ (z) has no zeros for Re(z) > 1.
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Remark. As we saw, it is somewhat more natural to express the functional equation as a statement about

ξ (z) = π−z/2Γ( z2 )ζ (z)

than about ζ (z) itself. This function is often referred to as the “completed” Riemann zeta function, and in a
certain precise sense, the extra factor

π−z/2Γ( z2 ) =
∫ ∞

−∞

|x |ze−πx
2 dx
|x |

is what should be included in the Euler product (Theorem 2) to account for the Archimedean place of Q;
the non-Archimedean places of Q are precisely the p-adic absolute values, for each prime number p, and
their contributions in the Euler product are precisely the factors (1 − 1

pz )
−1.

See [Arn09] and [Shu12] for more information.

Graphic. I created a plot in Mathematica of |ζ (z)| on the region |Re(z)| ≤ 2, |Im(z)| ≤ 50:

Plot3D[Abs[Zeta[x + I y]], {x, -2, 2}, {y, -50, 50}, PlotPoints -> 15, MaxRecursion -> 5, Boxed ->
False, ColorFunction -> ColorData["LightTemperatureMap"], BaseStyle -> {FontFamily -> "LinuxLibertine",
FontSize -> 20}]

The simple pole of ζ (z) at z = 1 is quite apparant in this image.

Comparing Dirichlet Series and Power Series

Before we move on to the prime number theorem, we will need a technical result known as Perron’s formula.
Due to lack of space we will not include a proof of this result, but to compensate, we will motivative it by
discussing an analogy between power series and Dirichlet series which is quite interesting in its own right.

In this section, the results are all taken from [Apo76, Ch.11].

DeVnition. Given a function f : N→ C, a series of the form
∑∞
n=1

f (n)
nz is known as a Dirichlet series.

Theorem. There is some σc ∈ [−∞,∞], called the abscissa of convergence, such that
∑∞
n=1 f (n)/n

z converges
for all Re(z) > σc and does not converge for all Re(z) < σc .
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Theorem. There is some σa ∈ [−∞,∞], called the abscissa of absolute convergence, such that
∑∞
n=1 f (n)/n

z

converges absolutely for all Re(z) > σa and does not converge absolutely for all Re(z) < σa .

Theorem. For any Dirichlet series with σc Vnite, we have 0 ≤ σa − σc ≤ 1.

Remark. An example of the worst-case scenario is the series
∑∞
n=1

(−1)n

nz , for which σc = 0 and σa = 1.

Theorem. A Dirichlet series converges uniformly on compact subsets of the half-plane Re(z) > σc .

So we see that

power series Dirichlet series

region of convergence disk right half-plane

absolute convergence vs. convergence ⇐⇒ =⇒

analytic function when convergent yes yes

Now we come to Perron’s formula, and an attendant lemma.

Lemma. If c > 0, deVne
∫ c+i∞
c−i∞ to mean lim

T →∞

∫ c+iT
c−iT . For any real number a > 0, we have

1
2πi

∫ c+i∞

c−i∞
az

dz
z
=


1 if a > 1,
1
2 if a = 1,

0 if 0 < a < 1.

Theorem 4 (Perron’s formula). Let F (z) =
∑∞
n=1 f (n)/n

z be absolutely convergent for Re(z) > σa ; let c > 0
and x > 0 arbitrary. Then if Re(z) > σa − c we have

1
2πi

∫ c+i∞

c−i∞
F (z + t)

xt

t
dt =

∑
n≤x

∗ f (n)
nz

where
∑∗ means that the last term in the sum must be multiplied by 1

2 when x is an integer.

These results Vt into the analogy, as explained in [Siu05]:

The Perron formula for Dirichlet series plays the same role as the Cauchy formula for power series.

. . . The domain of convergence of a power series is a disk, whereas the domain of convergence of a
Dirichlet series is a left half-plane. So the integration in the Cauchy formula for a power series is a
circle, whereas the integration in the Perron formula is a vertical line. There is a diUerence – the
Perron formula gives a partial sum of the Dirichlet series instead of the whole series. It corresponds
to the following truncated form of the Cauchy formula:

m∑
n=1

an (z − c)n =
1
2πi

∫
|w−c |=r

f (w)
( m∑
n=1

(z − c)n

(w − c)n+1

)
dw

=
1
2πi

∫
|w−c |=r

f (w) ·
1 −

(
z−c
w−c

)m+1

w − z
dw
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. . . The lemma corresponds to

1
2πi

∫
|z |=r

zn dz =

1 if n = −1,
0 if n , −1

for power series, and is used to pick out one coeXcient in a power series.

In [Eri08], Perron’s formula is motivated in a way more directly relevant to the prime number theorem:

Given a reasonablywell-behaved (e.g., not exponentially growing) function f : N→ C, the value of

F (x ) =
∑
n≤x

f (n)

is intimately tied to the poles of
∞∑
n=1

f (n)
ns

via Perron’s formula.

The Prime Number Theorem

DeVnition. The prime-counting function π (x ) is deVned for x > 0 to be π (x ) = #{prime numbers ≤ x }.

The famous prime number theorem, which we will discuss in this section, asserts that

π (x ) ∼
x

log(x )
.

DeVnition. The second Chebyshev function ψ (x ) is deVned by

ψ (x ) =
∑
n≤x

Λ(n).

This function of course has jump discontinuities at prime powers, and for many purposes it is useful to
consider a slightly “smoothed” version ψ0(x ), deVned by

ψ0(x ) =
1
2

(∑
n<x

Λ(n) +
∑
n≤x

Λ(n)
)
=

ψ (x ) if ψ is continuous at x ,
ψ (x +)+ψ (x − )

2 if ψ is not continuous at x .

In [Ing90, p.13], we Vnd an interesting remark:

It happens. . . that, of the three functions π , ϑ , and ψ , the one which arises most naturally from
the analytical point of view is the one most remote from the original problem, namely ψ . . . This is
a complication which seems inherent in the subject, and the reader should familiarize himself at
the outset with the function ψ , which is to be regarded as the fundamental one.

Proposition. ψ (x ) ∼ x if and only if π (x ) ∼ x
log(x ) .

Theorem 5 (von Mangoldt’s explicit formula for ψ0).

ψ0(x ) = x −
∑

ζ (ρ)= 0
0 < Re(ρ) < 1

x ρ

ρ
− log(2π ) −

1
2
log(1 − x−2).

11



Proof. Let f (n) = Λ(n), and let z = 0. We have that F (z) =
∑∞
n=1 f (n)/n

z = −
ζ (z )
ζ ′(z ) by Theorem 1. Applying

Perron’s formula (Theorem 4), we get that for Re(z) > 1 and some c > 1,

ψ0(x ) =
1
2πi

∫ c+i∞

c−i∞

(
−
ζ ′(z)
ζ (z)

)
xz

z
dz.

However, the integrand is a meromorphic function on the plane by our continuation of ζ (z) in Theorem 3,
so we can move the contour left, outside the region Re(z) > 1, as long as we account for any residues we
pick up at poles of the integrand along the way.

What are the poles we encounter as we move the contour further and further left, i.e., c → −∞?

(We mentioned immediately following Theorem 3 its help in understanding the zeros of ζ (z), and we use
that work here.)

• a pole at z = 1 caused by the factor − ζ
′(z )
ζ (z ) of the integrand, with residue x

• a pole at each non-trivial zero z = ρ of ζ in the strip 0 ≤ Re(z) ≤ 1 caused by the factor − ζ
′(z )
ζ (z ) of the

integrand, with residue −mx ρ

ρ wherem is the order to which ζ vanishes at ρ

• a pole at z = 0 caused by the factor x z
z of the integrand, with residue − ζ

′(0)
ζ (0)

• a pole at each trivial zero z = −2, −4, . . . of ζ , caused by the factor − ζ
′(z )
ζ (z ) of the integrand, with

residue 1
2mx 2m contributed by z = −2m.

One can prove that the integrand goes to 0 as c → −∞, so in fact we have that

ψ0(x ) = x −
∑

ζ (ρ)= 0
0 ≤ Re(ρ) ≤ 1
with mult.

x ρ

ρ
−
ζ ′(0)
ζ (0)

−

∞∑
m=1

1
2mx2m︸        ︷︷        ︸

1
2 log(1−x

−2)

Lastly, one can prove that − ζ
′(0)
ζ (0) = − log(2π ). �

By proving that ζ (z) has no zeros on the line Re(z) = 1 (which by the functional equation also implies no
zeros on the line Re(z) = 0), the sum over the non-trivial zeros ρ decays fast enough as x → ∞ to prove
that ψ0(x ) ∼ x , which is equivalent to π (x ) ∼ x

log(x ) , the prime number theorem.
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