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Abstract

We compute the additive structure of the RO(Cn)-graded Bredon equivariant cohomology of the

equivariant classifying space BCnSU(2), for any n that is either prime or a product of distinct odd

primes, and we also compute its multiplicative structure for n = 2. In particular, as an algebra over

the cohomology of a point, we show that the cohomology of BC2SU(2) is generated by two elements

subject to a single relation: writing σ for the sign representation of C2 in RO(C2), the generators

are an element c in dimension 4σ and an element C in dimension 4 + 4σ, satisfying the relation

c2 = ε4c + ξ2C, where ε and ξ are elements of the cohomology of a point. Throughout, we take

coefficients in the Burnside ring Mackey functor A.

The key tools used are equivariant “even-dimensional freeness” and “multiplicative comparison”

theorems for G-cell complexes, both proven by Lewis in [Lew88] and subsequently refined by

Shulman in [Shu10], and with the former theorem extended by Basu and Ghosh in [BG16]. The

latter theorem enables us to compute the multiplicative structure of the cohomology of BC2SU(2)

by embedding it in a direct sum of cohomology rings whose structure is more easily understood.

Both theorems require the cells of the G-cell complex to be attached in a well-behaved order, and a

significant step in our work is to give BCnSU(2) a satisfactory Cn-cell complex structure.

ix



Chapter 1

Introduction

1.1 Overview

Equivariant algebraic topology seeks to generalize classical topological notions such as the

cohomology of a space X to a context where the space in question has an action by a group G.

While the Borel cohomology of a G-space X is an equivariant generalization that can be computed

readily and is adequate for some purposes, it still loses much of the information encoded by

the action. One striking example is that, as measured by Borel cohomology, the characteristic

classes of a G-equivariant principal Π-bundle are in a certain precise sense determined entirely by

non-equivariant information about G and the bundle with its G-action forgotten (see [May87]). In

contrast, Bredon cohomology, graded not just on Z but on the real represenation ring RO(G), retains

far more information about the G-action on X and has a richer internal structure.

However, the price paid for these benefits is that computations of RO(G)-graded Bredon cohomology

are surprisingly difficult to perform, so that very little is known about equivariant characteristic

classes in this cohomology theory. In fact, it is a struggle to calculate the cohomology of a point, with

its necessarily-trivial G-action. This was first achieved by Stong in [Sto80] for G = Cp, the cyclic

group of prime order p, taking coefficients in the Burnside ring Mackey functor A, the equivariant

analog of integer coefficients. Since then, there has only been progress for certain other cyclic groups

in [HHR16] and [BG16], and very recently, for G = S3 in [KL18]; in [HHR16] the cohomology

was not computed using coefficients in A, and in [BG16] only the additive structure was computed.

Any calculation of this cohomology for some new G-space X helps relieve the current paucity of

examples, so that eventually we might better see the general landscape.
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The few computations of RO(G)-graded Bredon cohomology which have been done so far have

focused on the classifying spaces BGΠ of G-equivariant principal Π-bundles, which are of interest

because the cohomology of a classifying space determines the characteristic classes of that type

of principal bundle, just as in the non-equivariant setting. Lewis provided the first example by

computing the RO(Cp)-graded Bredon cohomology of BCpU(1) in the paper [Lew88], which

also established two crucial tools, an “even-dimensional freeness” theorem and a “multiplicative

comparison” theorem, of which more later. Shulman did the same for BCpO(2) in [Shu10], and here

the major tool was the equivariant Serre spectral sequence as developed in [MS93] and [Kro10].

As mentioned above, in the paper [BG16] Basu and Ghosh computed the additive structure of the

RO(G)-graded Bredon cohomology of a point when G = Cpq for distinct odd primes p, q, and they

also extended the even-dimensional freeness theorem to this case, and so were able to compute the

additive structure of the cohomology of BCpqU(1).

1.2 Main results

In this thesis, we compute the additive structure of the RO(Cn)-graded Bredon cohomology of the

equivariant classifying space BCnSU(2), for any n that is either prime or a product of distinct odd

primes, and we also compute its multiplicative structure for n = 2. Throughout, we use cohomology

with coefficients in the Burnside ring Mackey functor A. The work is organized as follows:

In Chapter 2, we first recall some basic facts about equivariant algebraic topology, as well as two

important results which first appeared in [Lew88], an “even-dimensional freeness” theorem and a

“multiplicative comparison” theorem. Both have corrected proofs given in [Shu10]. These results

consider a Cp-cell complex X with even-dimensional cells whose cells are attached in a sufficiently

well-behaved order. The former states that the cohomology of X is free as a module over the

cohomology of a point, and the latter states that the multiplicative structure of the cohomology of X
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can be embedded in a direct sum of cohomology rings whose structure is more easily understood.

As mentioned above, Basu and Ghosh in [BG16] extended the even-dimensional freeness theorem

to the group Cpq for distinct odd primes p, q.

In Chapter 3, we establish several lemmas regarding quaternionic representations and their projective

spaces. The key results here are cofiber sequences which, given a quaternionic Cn-representation W ,

describe how the Cn-cell complex structure of both its projective space PH(W) and the fixed points

PH(W)dCn thereof depend on the order in which the irreducibles of W are added.

In Chapter 4, we show that the projective space PH(Q) of a complete quaternionic Cn-universe Q

provides a model for the equivariant classifying space BCnSU(2), and we then use our work from

Chapter 3 to create a Cn-cell complex structure on PH(Q) which is sufficiently well-behaved, so that

the even-dimensional freeness and multiplicaive comparison theorems apply.

In Chapter 5, we take our work from Chapter 4 and reap the benefits of the even-dimensional freeness

theorem, finding the additive structure of the RO(Cn)-graded Bredon cohomology of BCnSU(2) for

all Cn for which the freeness theorem has been established, i.e., when n is prime or a product of

distinct odd primes.

Finally, in Chapter 6, we perform the harder work of computing the multiplicative structure of the

RO(C2)-graded Bredon cohomology of BC2SU(2). The reason for the restriction to n = 2 is that

the multiplicative structure of the cohomology of a point is quite convoluted for odd primes n (see

[Lew88, p.65]), and completely unknown for composite n (which would at any rate not be sufficient,

since we also lack a multiplicative comparison theorem for composite n). The general approach for

our computation is similar to that of Lewis in [Lew88]: we construct our generators explicitly, and

show that they generate the cohomology of BC2SU(2) by proving inductively that they generate the

cohomology of each piece of the filtration of BC2SU(2) by its C2-cell complex structure.
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Chapter 2

Preliminaries

Throughout, let G be a finite group.

2.1 Equivariant analogs of cell complexes

2.1.1 G-CW complexes

Definition 2.1. A G-CW complex is a G-space X and an increasing filtration of sub-G-spaces

Xn ⊆ X with the following properties.

• X0 is a discrete G-set.

• For each n, the subspace Xn+1 is formed from Xn by attaching cells of the form G/K × Dn+1

along boundary G-maps G/K × Sn → Xn, where K ⊆ G is a subgroup that can differ for

different cells, and Dn+1 and Sn have the trivial G-action.

• X is the colimit of the increasing subspaces X0 ⊆ X1 ⊆ · · · .

Remark 2.2. A G-CW-complex X may be thought of as an ordinary CW-complex equipped with a

cellular G-action G × X → X such that, for each n-cell Dn and g ∈ G, the action of g on X either

fixes Dn pointwise or gives a homeomorphism from Dn to a distinct second n-cell. Note also that

maps G/K × Sn → X are in bijective correspondence with maps Sn → XK .

The following are some illustrative examples of G-CW complexes.

Example 2.3. The space X = S1 with the action of G = C2 = 〈g〉 where g acts via rotation by π.
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• X0 is comprised by a single 0-cell α � C2/{e} × pt (indicated by circle).

• X1 is formed by attaching a single 1-cell β � C2/{e} × D1 (indicated by line) via the map

ϕ : C2/{e} × S0 → X0 defined by ϕ(h, 0) = h and ϕ(h, 1) = gh.

Example 2.4. The space X = D2 with the action of G = S3 = 〈s, r〉 where s acts via a reflection

and r acts via rotation by 2π/3.

• X0 is comprised by three 0-cells, α0 � S3/S3×pt (indicated by circle) and α1, α2 � S3/〈s〉×pt

(indicated by diamond, star).

• X1 is formed by attaching three 1-cells, β0 � S3/{e} × D1 (indicated by solid line) and

β1, β2 � S3/〈s〉 × D1 (indicated by dashed, dotted line).

• X2 is formed by attaching a single 2-cell γ � S3/{e} × D2 (indicated by shaded area).

2.1.2 G-cell complexes

Definition 2.5. Let V be a real G-representation. It is a classical result from representation theory

that we may put an inner product on V such that the G-representation is orthogonal, i.e., elements of
5



G act by norm-preserving maps. Then

• S(V), the unit sphere of V ,

• D(V), the unit disk of V , and

• SV , the one-point compactification of V

each inherit an action of G from its action on V .

Definition 2.6. Given a right G-set X and a left G-set Y , their balanced product X ×G Y is X ×Y/∼

where (xg, y) ∼ (x, gy) for g ∈ G.

Example 2.7. Given a group G and a subgroup K ⊆ G, consider G as a right K-set. Naturally, G is

also a left G-set. Then given a left K-set X , we can form the left G-set G ×K X .

Definition 2.8. A G-cell complex is a G-space X and an increasing filtration of sub-G-spaces

Xn ⊆ X with the following properties.

• X0 is a discrete G-set.

• For each n, the subspace Xn+1 is formed from Xn by attaching cells of the form G ×K D(V)

along boundary G-maps G ×K S(V) → Xn, where K ⊆ G is a subgroup that can differ for

different cells, and V is a real K-representation.

• X is the colimit of the increasing subspaces X0 ⊆ X1 ⊆ · · · .

Remark 2.9. The cells attached to form the nth filtration Xn are not required to have any particular

dimension, in contrast to the usual convention for CW complexes.

Here is an illustrative example of a G-cell complex.

Example 2.10. The space X = SV , where V = R2 with the action of G = S3 = 〈s, r〉 where s acts
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via a reflection and r acts via rotation by 2π/3.

• X0 is comprised by the cell α � S3 ×S3 D(R0) � D(R0), i.e., a point (indicated by circle).

• X1 is formed by attaching a cell β � S3 ×S3 D(V) � D(V) (indicated by sphere).

β

α

2.2 Mackey functors

2.2.1 Burnside category

Definition 2.11. An orbit of a finite group G is a G-set of the form G/H for a subgroup H ⊆ G.

The orbit category OG of a finite group G has the orbits of G as its objects, and morphisms are

morphisms of G-sets.

Remark 2.12. There exists a map G/H → G/K in OG if and only if H is subconjugate to K , i.e.,

there exists some g ∈ G for which g−1Hg ⊆ K (note that if α : G/H → G/K has α(eH) = gK ,

then g−1Hg ⊆ K).

Definition 2.13. Acovariant coefficient system is a functorOG → Ab, and a contravariant coefficient

system is a functor Oop
G → Ab.

One important example is the following:

Example 2.14. Given a based G-space X , we can make a homotopy group coefficient system by

defining πn(X)(G/H) = πn(XH), and where the map XK → XH induced by α : G/H → G/K with
7



α(eH) = gK sends x ∈ XK to gx ∈ XH .

For an overview of the equivariant stable homotopy category, see [GM95, §2]. In particular, recall

that for any G-space X , we can form a suspension G-spectrum Σ∞X .

Definition 2.15. The Burnside category BG of a group G is the full subcategory of the equivariant

stable homotopy category on the objects Σ∞(b+), where b is a finite G-set.

Remark 2.16. Equivalently, one can define BG to be the category whose objects are finite G-sets b

and whose morphisms are stable G-maps

BG(b, c) = {b+, c+}G = colim
V⊂U

[ΣV (b+), ΣV (c+)]G

where U is a given complete G-universe and the colimit is over the finite dimensional sub-G-

representations of U.

The following definition gives us a more concrete, useful way of working with the Burnside category.

Definition 2.17. For any two finite G-sets x and y, let S(x, y) be the isomorphism classes of spans

x ← z → y. Note that S(x, y) is an abelian monoid under the operation of t, which takes spans

x← z→ y and x← w→ y and produces the span x← z t w→ y.

Define the category B′G to have as its objects the finite G-sets, and for its morphisms, B′G(x, y) is

the abelian group formed by applying the Grothendieck construction to S(x, y). The composition of

x← u→ y and y← v→ z is the span x← w→ z formed by taking the pullback:

w

u v

x y z

The theorem from [May96] below establishes the relationship between the two categories. From
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now on we will refer to either of the categories from Definition 2.15 or Definition 2.17 as BG.

Theorem 2.18. The Burnside category BG is equivalent to the category B′G from Definition 2.17.

Some useful classes of morphisms in BG are the restrictions and transfers.

Definition 2.19. For any map of finite G-sets α : x→ y, we will define the restriction rα ∈ BG(x, y)

associated to α to be the span

x

x y

αid

and the transfer tα ∈ BG(y, x) associated to α to be the span

x

y x

idα

Remark 2.20. There are two embeddings of the orbit category OG into the Burnside category BG,

one covariant and the other contravariant; on objects an orbit G/H is sent to itself, and a morphism

α : G/H → G/K in OG can be sent to either rα or tα for the covariant or contravariant embedding,

respectively.

Remark 2.21. Observe that the disjoint union t is both the product and coproduct in BG, and that

any finite G-set is a disjoint union of orbits; therefore, any span x← z→ y can be decomposed into

spans of the form G/H
α
←− G/L

β
−→ G/K . In fact, we can decompose one step further and note that

such a span is itself the composition tα ◦ rβ.

2.2.2 Mackey functors

Definition 2.22. A Mackey functor is an additive functor Bop
G → Ab. The collection of Mackey

functors for a group G forms a category MackG, whose morphisms are the natural transformations

9



of such functors.

Remark 2.23. Because Mackey functors are additive, a Mackey functor M is determined by its

values M(G/H) on orbits, and similarly a morphism M → N of Mackey functors is determined by

the maps M(G/H) → N(G/H). Moreover, to know what a Mackey functor does on morphisms,

by Remark 2.21 it suffices to know what it does on restrictions rα and transfers tα of maps

α : G/H → G/K between orbits. Thus, by Remark 2.20, the Mackey functor M : Bop
G → Ab

determines a covariant coefficient system M∗ : OG → Ab and a contravariant coefficient system

M∗ : Oop
G → Ab, and a Mackey functor is determined by such a pair of coefficient systems, as long

as they agree on objects and satisfy a compatibility condition that arises from composition in BG.

Here we give two simple examples of Mackey functors.

Example 2.24. For any abelian group C, the constant Mackey functor of C is the Mackey functor

C : Bop
G → Ab where C(G/H) = C for any orbit G/H, and for any α : G/H → G/K , the behavior

on the restriction C(rα) : C → C is the identity, while the behavior on the transfer C(tα) : C → C is

multiplication by |H |/|K | (which is an integer because, by Remark 2.12, H is subconjugate to K).

Example 2.25. TheBurnside ringMackey functor A : Bop
G → Ab isBG(−,G/G), the representable

functor represented by the G-orbit G/G.

Although any Mackey functor can be seen as having two underlying coefficient systems, not

every coefficient system extends to a Mackey functor, which is an important point considering

Theorem 2.40.

Mackey functors also appear outside of algebraic topology, for example in [Bol97, §2, p.298]:

Example 2.26. Let L/K be a finite Galois extension of number fields with G = Gal(L/K), and

let cl(F) denote the ideal class group of a number field F. We can form a G-Mackey functor M

with M(G/H) = cl(LH). Given a map α : G/H → G/K with α(eH) = gK , for restriction M(rα)

10



we define the map cl(LH) → cl(LK ) by the appropriate combination of acting by g and extending

fractional ideals, and for transfer M(tg) we define the map cl(LK ) → cl(LH) by the appropriate

combination of acting by g and taking norms.

2.2.3 Box product of Mackey functors

Definition 2.27. The box product M � N of two Mackey functors M, N : Bop
G → Ab is defined to

be the Day tensor product of such functors. That is, if we let M � N be the “external” product

M � N : Bop
G × B

op
G → Ab, (M � N)(x, y) = M(x) ⊗ N(y)

then the box product M � N is the left Kan extension of M � N along the cartesian product functor,

B
op
G × B

op
G k-mod

B
op
G

M�N

× M�N

Thus, M � N is characterized by the universal property that for any P : Bop
G → Ab,

[B
op
G ,Ab](M � N, P) � [Bop

G × B
op
G ,Ab](M � N, P ◦ ×)

Remark 2.28. The category MackG is a symmetric monoidal category under �, with unit A.

Definition 2.29. Let M be a Mackey functor and let b be a G-set. Then the shifted Mackey functor

Mb is defined on objects by

Mb(c) = M(b × c)

and then with the natural behavior on morphisms. An alternative characterization of this is that

Mb = M � Ab, where A is the Burnside ring Mackey functor.
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2.2.4 Mackey functors with extra structure

Definition 2.30. A Green functor is a monoid in the category MackG, i.e., a Mackey functor

T : Bop
G → Ab together with natural transformations µ : T � T ⇒ T and η : A⇒ T , satisfying the

standard commutative diagrams

A � T T � T T � A

T

η�α

�
µ

id�η

�

T � T � T T � T

T � T T

id�µ

µ�id

µ

µ

A Green functor is commutative when the following diagram also commutes:

T � T T � T

T

swap

µ µ

Definition 2.31. A module over a Green functor T is a Mackey functor M : Bop
G → Ab with an

action natural transformation φ : T � M ⇒ M , satisfying the standard commutative diagrams

A � M T � M

M

η�id

� φ

T � T � M T � M

T � M M

µ�id

id�φ φ

φ

Definition 2.32. A module over a Green functor T is free when it is isomorphic to T � Ab � Tb for

some G-set b. (See [Shu10, §2.2.7] for justification.)

Definition 2.33. An RO(G)-graded Mackey functor M∗ is just a collection of Mackey functors

Mα for each α ∈ RO(G). We can define a graded box product M∗ � N∗ by

(M∗ � N∗)α =
⊕

β1+β2=α

(M β1 � N β2)

and the unit for � is the graded Burnside ring Mackey functor A∗, which is just A concentrated in
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degree 0. The category of graded Mackey functors is then a symmetric monoidal category under �.

One can then define RO(G)-graded Green functors and RO(G)-graded modules over RO(G)-graded

Green functors using the same diagrams as above.

Remark 2.34. For more details about what it means for a graded Green functor to be commutative,

see the discussion in [Shu10, §2.2.5 and §2.5.1].

Definition 2.35. If M∗ is an RO(G)-graded Mackey functor and B∗ is a Z-graded abelian group,

then M∗ ⊗ B∗ is the RO(G)-graded Mackey functor defined by

(M∗ ⊗ B∗)α =
⊕
β+n=α

M β ⊗ Bn.

2.2.5 Cp-Mackey functors

Remark 2.36. Observe that there are only two Cp-orbits: the singleton Cp/Cp, and the orbit Cp/{e}

that is isomorphic to Cp itself. Throughout this work, we will often follow a notational convention

from [Shu10] regarding them: instead of Cp/Cp we will write •, and instead of writing Cp/{e} we

will write ☼, with the symbols • and ☼ intended to represent the structure of the relevant orbits.

Remark 2.37. In addition to the fact that there are only two Cp-orbits, • and ☼, the morphisms

between them in BCp are also easy to describe. Observe that there is a single map ρ : ☼→ •, and

no maps • → ☼. There are p maps ☼→ ☼, corresponding to the actions of each element of Cp.

Thus, by Remark 2.23, to describe a Cp-Mackey functor M on objects, we only need to know M(•)

and M(☼), and to describe it on morphisms, we only need to know how M acts on rρ, tρ, and the p

elements ☼
id
←−− ☼

g
−→ ☼ in BG(☼,☼). The latter piece of information manifests itself as a Cp-action

on M(☼) (see more in [Shu10, §2.4.1]).

The following notational convention for Cp-Mackey functors originated in [Lew88]:
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M(•)

M(☼)

M(rρ) M(tρ)

Cp-action

With G = Cp for a prime p, the following Mackey functors will play an important role.

Definition 2.38. The Cp-Mackey functors A, A[d], R, L, R−, L−, 〈C〉.

A

Z ⊕ Z

Z

[ 1 p ]
[ 0
1

]

triv

R

Z

Z

1 p

triv

L

Z

Z

p 1

triv

〈C〉

C

0

0 0

triv

The “twisted Burnside” Mackey functor arises in H̃∗Cp
(S0; A) when p is odd.

A[d]

Z ⊕ Z

Z

[ d p ]
[ 0
1

]

triv

The “signed” versions of R and L are arise in H̃∗C2
(S0; A).
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R−

0

Z

0 0

−1

L−

Z/2

Z

0 quot

−1

2.3 RO(G)-graded equivariant cohomology

We forgo a more motivated treatment of RO(G)-graded equivariant cohomology and simply list the

axioms and certain basic facts we will need to refer to. We use the formulation in [Shu10, §2.3.2].

Let G-Top∗ denote the category of based G-spaces, where the basepoint is required to be G-

fixed. Then the homotopy category ho-G-Top∗ is formed by localizing at the collection of weak

G-equivalences, i.e., the G-equivariant maps f : X → Y for which f H
∗ : πn(X) → πn(Y ) is an

isomorphism of coefficient systems for all n (see Example 2.14).

Definition 2.39. A reduced ordinary equivariant cohomology theory H̃∗G indexed on RO(G)

consists of functors H̃α
G : ho-G-Top∗ → MackG satisfying the following properties:

• Weak equivalence: Weak G-equivalences induce isomorphisms on H̃∗G.

• Exactness: If i : A→ X is a G-cofibration with cofiber X/A, then for each α ∈ RO(G)

H̃α
G(X/A) → H̃α

G(X) → H̃α
G(A)

is an exact sequence in the abelian category MackG.

15



• Additivity: If X =
∨

i Xi as basedG-spaces, then the inclusions Xi → X induce an isomorphism

H̃∗G(X) →
∏

i H̃∗G(Xi).

• Suspension: For each α ∈ RO(G) and real G-representation V , there is a natural isomorphism

Σ
V : H̃α

G(X) → H̃α+V
G (ΣV X) = H̃α+V

G (SV ∧ X).

• Dimension: H̃n
G(S

0) = 0 for all integers n ∈ Z, n , 0.

• Bookkeeping: Σ0 is the identity natural transformation, and the suspension isomorphism

Σ
V : H̃α

G(X) → H̃α+V
G (ΣV X)

is covariantly natural in V and contravariantly natural in X . Moreover, if U,V,W are real

G-representations with V � W , and f : SV → SW is the stable homotopy class of the map

associated to a particular isomorphism V → W , then ΣUΣV � ΣU⊕V , and the following

diagrams commute:

H̃α
G(X) H̃α+V

G (ΣV X)

H̃α+W
G (ΣW X) H̃α+W

G (ΣV X)

ΣV

ΣW H̃id+ f
G
(id)

Σ f id

One can define ordinary Z-graded equivariant cohomology using a cellular chain complex, with

coefficients that are a coefficient system. The following result from [LMM81] establishes when such

a cohomology theory comes from one with an RO(G)-grading.

Theorem 2.40. The ordinary Z-graded cohomology H̃∗G(−; M) extends to an RO(G)-grading if and

only if M is the underlying contravariant coefficient system of a Mackey functor.

Remark 2.41. Given a map of G-spaces f : X → Y , we will abuse the notation f ∗ and let it denote

16



the induced map in cohomology at any level of generality, e.g.,

• the map of RO(G)-graded H̃∗G(S
0;T)-algebras H̃∗G(Y ;T) → H̃∗G(X;T)

• the map of Mackey functors H̃α
G(Y ; M) → H̃α

G(X; M)

• the map of abelian groups H̃α
G(Y ; M)(b) → H̃α

G(X; M)(b)

where T is a Green functor, M is a Mackey functor, α ∈ RO(G), and b is a G-set.

2.4 The structure of H̃∗G(S
0; A)

The computation of the RO(G)-graded equivariant cohomology of a point is a non-trivial undertaking.

Stong made the first such computation in unpublished correspondence [Sto80], though the results

were finally published in [Lew88, Appendix], with G = Cp for p prime and coefficients in the

Burnside ring Mackey functor A. That was the state of this question until the groundbreaking

paper [HHR16], where in the course of their work, Hill, Hopkins, and Ravenel performed some

calculations of the RO(C2n)-graded cohomology of a point, although with the coefficients being

the constant Mackey functor Z. More recently, Basu and Ghosh computed the additive structure of

the RO(Cpq)-graded cohomology of a point in [BG16] using methods similar to Stong’s, with the

situation made more intricate due to the additional complexity of RO(Cpq).

2.4.1 The case of C2

Wewill describe here some of the structure of the cohomology ring H̃∗C2
(S0; A). For a full accounting

of it, see the description in [Shu10], or the proof in [Lew88].
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·

·
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Figure 2.1: The cohomology H̃α
C2
(S0; A)

Definition 2.42. Let σ be a particular copy of the sign representation of C2 of dimension one. Then

every α ∈ RO(C2) has a representative of the form m + nσ for m, n ∈ Z.

Definition 2.43. The element 1 ∈ H̃0
C2
(S0; A)(•) � A(•) is the image of the identity element of

A(•) under the unit map A→ H̃∗C2
(S0; A) of the graded Green functor H̃∗C2

(S0; A).

Definition 2.44. The element ε ∈ H̃σ
C2
(S0; A)(•) � 〈Z〉(•) is the image of 1 ∈ H̃0

C2
(S0; A) under

the map

A � H̃0
C2
(S0) � H̃σ

C2
(Sσ) → H̃σ

C2
(S0) � 〈Z〉

induced by the inclusion S0 ↪→ Sσ. Observe that the inclusion S0 ↪→ Snσ therefore represents the

element εn ∈ H̃nσ
C2
(S0; A)(•), and more generally Sa+bσ ↪→ Sa+cσ represents εc−b.
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|α |

|αC2 |

·

·

·

·

·

·

·

·

ξ 1

ε

·

·

·

·

·

·

·

·

H̃α
C2
(S0)(•)

|α |

|αC2 |

·

·

·

·

·

·

·

·

ι−1 rρ(1) ι

·

·

·

·

·

·

·

·

H̃α
C2
(S0)(☼)

Figure 2.2: The location of some important elements of H̃α
C2
(S0; A)

Definition 2.45. Fixing a non-equivariant identification of Sσ with S1 induces isomorphisms

H̃0
C2
(S0)(☼) � H̃1

C2
(S1)(☼) → H̃1

C2
(Sσ) � H̃1−σ

C2
(S0)(☼)

and

H̃0
C2
(S0)(☼) � H̃σ

C2
(Sσ)(☼) → H̃σ

C2
(S1) � H̃σ−1

C2
(S0)(☼)

Define ι and ι−1 to be the images of rρ(1) ∈ H̃0
C2
(S0)(☼) under these maps, where ρ : ☼→ • is the

projection map.

Definition 2.46. Define ξ ∈ H̃2σ−2
C2
(S0)(•) to be the unique element whose image under rρ is (ι−1)2.

2.4.2 The case of Cp and Cpq for odd primes p, q

For the full details of the cohomology H̃∗Cp
(S0; A) when p is odd, again see the description in

[Shu10], or the proof in [Lew88]. However, one key observation to make about it, as can be seen

in Figure 2.3, is that the isomorphism class of the Mackey functor H̃α
Cp
(S0; A) no longer depends

completely on the values (|αCp |, |α |); when |α | = |αCp | = 0, the Mackey functor H̃α
Cp
(S0; A)

depends on an integer dα which is determined in a convoluted way described in [Lew88, p.65]. As
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Lewis comments there,

The major source of unpleasantness in the description of the multiplicative structure of

the equivariant cohomology of a point and of complex projective spaces is this lack of a

canonical choice for d.

This is the case for quaternionic projective spaces as well.

Basu and Ghosh compute the additive structure of the cohomology H̃∗Cpq
(S0; A) for distinct odd

primes p and q in [BG16]. They find that a similar problem arises regarding dependence on the

specific α ∈ RO(Cpq), although it is also limited in scope to particular α which are analogous the

case of Cp: in [BG16, Theorem 6.5], we see that

Theorem 2.47. Suppose α ∈ RO(Cpq) is such that at least one of |αH | or |αK | is non-zero

whenever (K,H) ∈ {(Cp, e), (Cq, e), (Cpq,Cp), (Cpq,Cq)}. Then, up to isomorphism, the Mackey

functor H̃α
Cpq
(S0) depends only on the fixed points |α |, |αCp |, |αCq |, |αCpq |.

2.5 Even-dimensional freeness

In this section we will look at a result which generalizes the standard result in the non-equivariant

setting that the cohomology of a cell complex built only out of even-dimensional cells must be free.

Definition 2.48. An element α ∈ RO(G) is said to be even if |αH | is even for all subgroups H ≤ G.

Definition 2.49. Let V be a representation of H ≤ G. A cell G ×H D(V) of a G-cell complex is

called even if V is even in RO(H).

Definition 2.50. Given representations W and V of G, we say that W � V if, whenever |WS | < |VS |

for a subgroup S ≤ G, we also have |WT | ≤ |VT | for all subgroups S ≤ T ≤ G.
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Figure 2.3: The cohomology H̃α
Cp
(S0; A) for p odd

Definition 2.51. A G-cell complex structure on a space X is said to be even, or of even type, when

(a) every cell is even (as in Definition 2.49).

We will further say it is properly even when it also satisfies

(b) if the cell G ×H D(W) is attached before the cell G ×H D(V), then W � V , and

(c) for any positive integer N , there are only finitely many cells G ×H D(V) where |VK | ≤ N for

all subgroups K ≤ G, and

(d) each piece Xn of the filtration is a finite G-cell complex.

Theorem 2.52. Let G = Cp for any prime p, or Cpq for any odd primes p and q. If X is a properly

even G-cell complex, then the cohomology H̃G(X; A) is free as a module over the Green functor

H̃G(S0; A). Furthermore, H̃G(X; A) decomposes as a direct sum, with summands
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• one copy of H̃∗G(X0+; A), and

• one copy of ΣV H̃∗G(G/H+; A) for each cell of the form G ×H D(V).

This theorem was proven for G = Cp by Lewis in [Lew88], with his proof corrected by Shulman in

[Shu10], and this theorem was proven for G = Cpq by Basu and Ghosh in [BG16].

The basic idea in each proof is the same as in the non-equivariant case: to show that the boundary

maps are all zero in the long exact sequence in cohomology arising from the cofiber sequences

Xn → Xn+1 → Xn+1/Xn.

One of the corrections that Shulman made to Lewis’ proof was to introduce condition (c) from the

definition of properly even, which is necessary to ensure that H̃∗G(X+; A), which a priori would be

an infinite product, does in fact agree with the corresponding coproduct and therefore decomposes

as a direct sum.

Remark 2.53. Ferland, in his thesis [Fer99], established a freeness result for the cohomology of

G-cell complexes X which are even, but not necessarily properly even. In this situation, we have to

consider non-trivial boundary maps in the long exact sequence in cohomology, which curiously

do not change the fact that the cohomology is free, but which do change the dimensions in which

generators occur, so that the they no longer necessarily live in the dimensions corresponding to the

representation cells that comprise X .
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2.6 Multiplicative comparison theorem for Cp

2.6.1 Statement of the theorem

The following surprising result first appeared in [Lew88] but with a flawed proof; it was subsequently

corrected by Shulman in [Shu10, Theorem 3.10, p.55]. We have termed it a “multiplicative

comparison” theorem because it allows us to compare the multiplicative structure of H̃∗Cp
(X; A)

with that of other objects which are more easily understood.

Theorem 2.54. Let X be a properly even Cp-cell complex. Let i : XCp → X be the inclusion of its

fixed points. Let ρ : ☼→ • be the projection, which induces a map H̃∗Cp
(X+) → H̃∗Cp

(X+ ∧Cp+) �

H̃∗Cp
(X+)☼. If α ∈ RO(Cp) is even, the map

ρ ⊕ i∗ : Hα
Cp
(X; A) → Hα

Cp
(X; A)☼ ⊕ Hα

Cp
(XCp ; A)

is injective.

Remark 2.55. Observe that in Lewis’s original formulation of this result, [Lew88, Corollary

2.7, p.70], the map ρ used here is instead thought of as the map M(rρ) : M(•) → M(☼), where

M = H̃∗Cp
(X; A). This is ultimately equivalent to Shulman’s version, as described in [Shu10, p.54].

2.6.2 Relationships with non-equivariant cohomology

We have seen in Theorem 2.54 that, for certain Cp-cell complexes X with “even-dimensional” cells,

the graded Green functor H̃∗Cp
(X; A) can be embedded in the direct sum of

• H̃∗Cp
(X; A)☼, the same Green functor but shifted by the Cp-set ☼ as in Definition 2.29, and

23



• H̃∗Cp
(XCp ; A), the cohomology of the fixed points of X .

Crucially, both of these pieces can be understood in terms of non-equivariant cohomology, which

makes Theorem 2.54 a powerful tool in computing the RO(Cp)-graded cohomology of such spaces.

Remark 2.56. In order to understand the first term H̃∗Cp
(X; A)☼, the shifted cohomology of X , we

first make a simple observation about shifting Cp-Mackey functors. Recall the notation • and ☼

from Remark 2.36. Then for any Cp-Mackey functor M , we have by Definition 2.29 that

M☼(•) = M(☼), M☼(☼) = M(☼ ×☼) � ⊕g∈Cp M(☼).

Thus, H̃∗Cp
(X; A)☼ depends only on H̃∗Cp

(X; A)(☼).

Now, by [Lew88, Example 1.1g, p.60], for any Cp-space X and any α ∈ RO(Cp), we have

H̃α
G(X; A)(☼) � H̃ |α |(X;Z),

which establishes an elegant relationship with non-equivariant cohomology. Therefore, we identify

H̃∗G(X; A)(☼) with H |∗|(X;Z), i.e., the RO(G)-graded abelian group whose value at α ∈ RO(G) is

the group H |α |(X; Z). As Shulman points out in [Shu10, p.30],

The identification of H̃α
Cp
(X; M)(☼) with the nonequivariant cohomology group shown

uses the adjunction [Cp+ ∧ X,HM]Cp � [X,HM] together with the fact that the

underlying nonequivariant spectrum of HM is a H(M(☼)). The Cp-action comes from

the action on the k[Cp]-module M(☼).

The second term in Theorem 2.54 is H̃∗Cp
(XCp ; A), which makes it valuable to understand what the

RO(Cp)-graded cohomology of the space X with “even-dimensional” cells looks like when X has a

trivial Cp-action. The following result from [Lew88] shows that it is just the H̃∗Cp
(S0; A)-algebra

generated by the non-equivariant cohomology of X .
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Theorem 2.57. If a CW complex X with cells only in even dimensions is regarded as a Cp-space

with trivial Cp-action, then there is an isomorphism of RO(Cp)-graded Mackey functors

H̃∗Cp
(X; A) � H̃∗Cp

(S0; A) ⊗ H̃∗(X;Z)

which preserves cup products (here, ⊗ is in the sense of Definition 2.35).

Remark 2.58. We will see in Theorem 3.34 and Theorem 3.36 that when X is the projective

space of either a complex or a quaternionic Cp-representation, the fixed points XCp are a disjoint

union of complex or quaternionic projective spaces, whose non-equivariant cohomology is known

classically, so that via Theorem 2.57, the codomain of i∗ is a direct sum of easily-understood

H̃∗Cp
(S0; A)-algebras. We will therefore find it useful in Chapter 6 to break up i∗ into components

i∗k , one for each in the direct sum. Observe that in this case, to specify an element of H̃α
Cp
(X; A)

uniquely, it suffices to describe its image under ρ and each i∗k , though one must first verify that an

element exists with those images.
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Chapter 3

Representations and projective spaces

3.1 Generalities about representations

Definition 3.1. Let G be a finite group, and let R be a ring. Define a G-representation over R to

be a left R-module V together with an action ρ : G × V → V such that the action of each element

pg : V → V is left R-linear. By abuse of notation, we will refer to the representation as V .

Remark 3.2. In this work the only rings R we will use will be R, C, or H, in which case we refer to

a representation over R as real, complex, or quaternionic, respectively.

Much of classical representation theory over R and C carries over to H. For example, if G is compact

and W is a quaternionic G-representation, then W has a G-invariant inner product. As in the real

and complex cases, this implies W decomposes as a direct sum of irreducibles. See [BD85].

Definition 3.3. For any representation V , no matter whether it is introduced as a real, complex, or

quaternionic representation, the notation |V | will always be defined to mean the dimension |V |R of

V considered as a real vector space.

Definition 3.4. Given a complex G-representationV , define eV to be the extension ofV , which is the

quaternionic G-representation H ⊗C V , where H is seen as a right C-module via right multiplication:

q ⊗ zv = qz ⊗ v q ∈ H, z ∈ C, v ∈ V

Given a quaternionic G-representation W , define rW to be the restriction of W , which is the

quaternionic G-representation W viewed as a complex G-representation. We will often write W for
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rW , only using the latter for emphasis.

Definition 3.5. We say that a complex G-representation V has

• real type if V admits a conjugate-linear G-map J : V → V with J2 = id,

• complex type if V � V , and

• quaternionic type if V admits a conjugate-linear G-map J : V → V with J2 = −id.

Definition 3.6. ForK ∈ {R,C,H}, define Irr(G,K) to be the set of isomorphism classes of irreducible

G-representations over K . We also specify these subsets of Irr(G,C):

Irr(G,C)R = {V ∈ Irr(G,C) : V has real type}

Irr(G,C)C = {V ∈ Irr(G,C) : V has complex type}

Irr(G,C)H = {V ∈ Irr(G,C) : V has quaternionic type}

as well as these subsets of Irr(G,H):

Irr(G,H)R = {eV : V ∈ Irr(G,C)R}

Irr(G,H)C = {eV : V ∈ Irr(G,C)C}

Irr(G,H)H = {W : rW ∈ Irr(G,C)H}

Observe that, by definition, V ∈ Irr(G,C)C if and only if V � V , so the elements of Irr(G,C)C can

be paired off, each with its conjugate.

Proposition 3.7. Let 1
2 Irr(G,C)C be a subset of Irr(G,C)C containing exactly one element from
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each conjugate pair. If Irr(G,C)H is empty, then extension e is a bijection

Irr(G,C)R t 1
2 Irr(G,C)C

e
−−−→ Irr(G,H).

Proof. By [BD85, Theorem II.6.3, p.97], any V ∈ Irr(G,C) or W ∈ Irr(G,H) has exactly one type,

so that

Irr(G,C) = Irr(G,C)R t Irr(G,C)C t Irr(G,C)H

and

Irr(G,H) = Irr(G,H)R t Irr(G,H)C t Irr(G,H)H.

By [BD85, Exercise II.6.10.7, p.100], extension gives bijections

Irr(G,C)R
e
−−−→ Irr(G,H)R, 1

2 Irr(G,C)C
e
−−−→ Irr(G,H)C.

Finally, the set Irr(G,H)H must be empty because any element of Irr(G,H)H by definition would

have to restrict to an element of Irr(G,C)H, which we have assumed to be empty. �

This result lets us more easily identify the type of an irreducible complex G-representation.

Proposition 3.8 ([BD85, Theorem II.6.8, p.100]). For any V ∈ Irr(G,C) we have

1
|G |

∑
g∈G

χV (g
2) =



1 ⇐⇒ V has real type,

0 ⇐⇒ V has complex type,

−1 ⇐⇒ V has quaternionic type.
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3.2 Cn-representations

3.2.1 Classification of irreducibles

Throughout this section, we will let 1n ∈ Cn denote the usual generator of Cn, and let ζn = e2πi/n.

Definition 3.9. For any integer r , define the complex Cn-representation nΦr (or Φr , if the choice of

n is understood) to be C with the action ρ : Cn × C→ C defined by ρ(1n, z) = z · ζr
n .

Remark 3.10. If r ≡ s mod n we have ζr
n = ζ s

n , and hence Φr = Φs. Nevertheless, it will be

convenient to allow the subscript to be any integer. Also, observe that for any r, the conjugate

representation Φr is C with 1n acting as ζr
n = ζ

−r
n , which is just Φ−r .

The following classification is a standard result.

Theorem 3.11. The irreducible complex Cn-representations are, up to isomorphism,

Φ0, . . . ,Φn−1.

Moreover,

Φr � Φs ⇐⇒ r ≡ s mod n.

Now we will want a classification of irreducible quaternionic Cn-representations.

Definition 3.12. For any integer r, define the quaternionic Cn-representation nΨr (or Ψr , if the

choice of n is understood) to be H with the action ρ : Cn × H→ H defined by ρ(1n, q) = q · ζ k
n .

Remark 3.13. Note that each map ρ(g, · ) : H→ H is left H-linear, as required by the definition.

Also note that Ψr is the extension eΦr .
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Lemma 3.14. There is an isomorphism of complex Cn-representations Ψr � Φr ⊕ Φ−r .

Proof. The complex subspaces of Ψr

{a + bi + c j + ck ∈ Ψr : c = d = 0}, {a + bi + c j + ck ∈ Ψr : a = b = 0}

are complements of each other in Ψr , they are Cn-invariant, and they are isomorphic to Φr and Φ−r ,

respectively. �

Theorem 3.15. The irreducible quaternionic Cn-representations are, up to isomorphism,

Ψ0,Ψ1, . . . ,Ψbn/2c .

Moreover,

Ψr � Ψs ⇐⇒ r ≡ ±s mod n.

Proof. The character of the representation Φr is χΦr (k) = ζ
rk
n , and

1
|Cn |

n−1∑
k=0

χΦr (2k) =
1
n

n−1∑
k=0
(ζ2r

n )
k =


1 if 2r ≡ 0 mod n,

0 otherwise.

By Proposition 3.8, this implies that Irr(Cn,C)H is always empty, that

Irr(Cn,C)R =


Φ0 if n is odd,

Φ0,Φn
2

if n is even,

and that Irr(Cn,C)C contains the rest, which can be grouped into conjugate pairs as (Φr,Φn−r ).
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We can choose a subset 1
2 Irr(G,C)C containing exactly one element from each pair,

1
2 Irr(Cn,C)C =


Φ1,Φ2, . . . ,Φb n2 c

if n is odd,

Φ1,Φ2, . . . ,Φn
2−1 if n is even.

Because Ψr is the extension eΦr , by Proposition 3.7 we conclude that regardless of the parity of n,

Irr(Cn,H) = {Ψ0,Ψ1, . . . ,Ψb n2 c
}.

If Ψr � Ψs, then by Lemma 3.14, we have an isomorphism of complex Cn-representations

Φr ⊕ Φ−r � Φs ⊕ Φ−s .

The decomposition of a complex Cn-representation into irreducibles is unique (Proposition 3.17)

and Φr � Φs ⇐⇒ r ≡ s mod n (Theorem 3.11), so we must have r ≡ ±s mod n. For the other

direction, it is clear that Ψr � Ψs when r ≡ s mod n, so assume that r ≡ −s mod n. Then there is a

left H-linear Cn-equivariant isomorphism f : Ψr → Ψs defined by f (q) = q j, so that Ψr � Ψs. �

3.2.2 Isotypical components

Definition 3.16. For a complex Cn-representationV and integer r , define V(r;C) to be the isotypical

component of V associated to the irreducible complex representation Φr :

V(r;C) =
⊕
U⊆V

U�Φr

U.
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Similarly, for a quaternionic Cn-representation W and integer r , define W(r;H) to be the isotypical

component of W associated to the irreducible quaternionic representation Ψr :

W(r;H) =
⊕
U⊆W
U�Ψr

U.

Proposition 3.17. Any complex or quaternionic Cn-representation decomposes as an internal direct

sum into its isotypical components:

V =
n−1⊕
r=0

V(r;C), W =
bn/2c⊕
r=0

W(r;H).

Proof. The group rings C[Cn] and H[Cn] are semisimple. �

Proposition 3.18. For any quaternionic Cn-representation W , we have

W(r;H) = W(−r;H) =


W(r;C) if 2r ≡ 0 mod n,

W(r;C) ⊕W(−r;C) otherwise

and therefore

|W(r;C)| =


|W(r;H)| if 2r ≡ 0 mod n,

1
2 |W(r;H)| otherwise.

Proof. This can be seen by combining Lemma 3.14, the fact thatΨr � Ψs if and only if r ≡ ±s mod n

from Theorem 3.15, and the fact that r ≡ −r mod n if and only if 2r ≡ 0 mod n. �

3.2.3 Fixed subspaces and restricted representations

For any G-representation V and any subgroup H ≤ G, we can form the restricted representation V |H .

The following proposition describes how complex and quaternionic irreducible Cn-representations
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behave under restriction to a subgroup dCn ≤ Cn. Recall the notation nΦr and nΨr fromDefinition 3.9

and Definition 3.12, and observe that there is a natural isomorphism dCn � Cn/d by sending d · 1n

to 1n/d , so that a dCn-representation can be treated as a Cn/d-representation.

Proposition 3.19. For any integers n and r , and any d | n, we have that

nΦr |dCn
� n/dΦr, nΨr |dCn

� n/dΨr .

Proof. In the representation nΦr , the element 1n ∈ Cn acts as ζr
n . Therefore the element d · 1n ∈ Cn

acts as (ζr
n )

d = ζr
n/d . When we restrict nΦr to the representation nΦr |dCn

and consider it as a Cn/d-

representation, the element 1n/d ∈ Cn/d acts the way d · 1n ∈ Cn does, so that nΦr |dCn
� n/dΦr .

(The argument is identical in the quaternionic case.) �

Now we can extend this subscript notation more generally. If V is any Cn-representation, we will

write nV to emphasize that it is a Cn-representation, and by n/dV we will mean V |dCn
considered as

a Cn/d-representation by restriction to dCn ≤ Cn.

Proposition 3.20. For any complex Cn-representation V , and any d | n, we have

(nV)dCn = (n/dV)Cn/d .

Proof. This follows directly from the definition, because the action of Cn/d on n/dV = V |dCn
is

precisely the action of dCn on nV . �
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3.2.4 Tensoring with a given irreducible

Proposition 3.21. For any complex Cn-representation V , and any integers r and k,

(Φr ⊗C V)(k;C) � Φr ⊗C V(k − r;C).

Proof. Tensor products distribute over direct sums, V is a direct sum of irreducibles Φs, and

Φr ⊗C Φs � Φk ⇐⇒ s ≡ k − r mod n. �

Theorem 3.22. For any complex Cn-representation V , and any integer r ,

|(Φr ⊗C V)Cn | = |V(−r;C)|

and Φr ⊗C V(−r;C) is a trivial Cn-representation of dimension |V(−r;C)|, so that

SΦr⊗CV(−r;C) = S |V(−r;C)| .

Proof. Using Proposition 3.21 with k = 0, we conclude that

(Φr ⊗ V)Cn = (Φr ⊗ V)(0;C) � Φr ⊗C V(−r;C)

is fixed by Cn, i.e., it is a trivial representation. Moreover,

|Φr ⊗C V(−r;C)| = |V(−r;C)|

because tensoring with Φ−r over C doesn’t change dimension. Therefore we can use the fact (rather,
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the good notation) that SV is just the sphere S |V | for a trivial Cn-representation V , so that

SΦr⊗CV(−r;C) = S |V(−r;C)| . �

Remark 3.23. In the proof of Theorem 4.18, we will apply Theorem 3.22 to a quaternionic

Cn-representation W , while keeping in mind Proposition 3.18.

3.3 Projective space of a Cn-representation

3.3.1 Definitions

Definition 3.24. For a complex vector space V , we define the complex projective space of V to be

the space of one-dimensional complex subspaces of V , i.e.,

PC(V) = (V \ {0})/∼

where v ∼ λv for any λ ∈ C×, and we write the equivalence class of v in PC(V) as 〈v〉.

Similarly, for a left H-module W , we define the projective space of W to be the space of one-

dimensional left H-subspaces of W , i.e.,

PH(W) = (W \ {0})/∼

where w ∼ λw for any λ ∈ H×, and we write the equivalence class of w in PH(W) as 〈w〉.

Remark 3.25. We use the usual Euclidean topology onH. IfW is a finite dimensional leftH-module,

then it is isomorphic to Hn for some n, and we give W that topology; if W is countably infinite

dimensional, we topologize it as the colimit of its finite dimensional sub-H-modules.
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Naturally, PH(W) has the quotient topology. Note that if U is a sub-H-module of W , there is an

inclusion PH(U) ⊂ PH(W). If W is countably infinite dimensional, then the quotient topology of

PH(W) is the same as the the topology it gets as the colimit of the subspaces PH(U) as U ranges

over the finite dimensional sub-H-modules. See [Lew88, p.71].

Remark 3.26. If V is a complex G-representation, there is a natural G-action on PC(V) defined by

g〈v〉 = 〈gv〉, which is well-defined since the action of G is via linear maps. Similarly, there is a

natural G-action on PH(W) where W is a quaternionic G-representation.

Definition 3.27. For any complexCn-representationV and quaternionicCn-representationW , define

the spaces

Pr
C(V) = PC(V(r;C)). Pr

H(W) =


PH(W(r;H)) if 2r ≡ 0 mod n,

PC(W(r;C)) otherwise.

These spaces have a trivial Cn-action, i.e., Pr
C
(V) ⊆ PC(V)Cn and Pr

H
(W) ⊆ PH(W)Cn , because for

any given point in these spaces, the action of Cn scales every non-zero coordinate by the same factor

(namely, ζr
n ) which has no effect in projective space. See Theorem 3.34 and Theorem 3.36 for the

full details.

Remark 3.28. When 2r ≡ 0 mod n, we have thatW(r;H) = W(r;C) by Proposition 3.18, so that we

could also say that Pr
H
(W) = PH(W(r;C)) when 2r ≡ 0 mod n, but the notation W(r;H) emphasizes

that it is something one can take the quaternionic projective space of.

When instead 2r . 0 mod n, the notation Pr
H
(W) is more than a little misleading because this is in

fact a complex projective space.
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3.3.2 Cofiber sequences

Theorem 3.29. For any complex Cn-representation V and any k, there is a cofiber sequence

PC(V)+ → PC(V ⊕ Φk )+ → SΦ−k⊗CV .

Thus to form PC(V ⊕ Φk ) from PC(V), we attach a cell of the form D(Φ−k ⊗C V).

Proof. Write an element of PC(V ⊕ Φk ) as 〈v, x〉, where v ∈ V and x ∈ Φr are not both 0, and

〈λv, λx〉 = 〈v, x〉 for any λ ∈ C×. Then the complement of the image of PC(V)+ → PC(V ⊕ Φk )+ is

{〈v, 1〉 : v ∈ V}, which is clearly non-equivariantly homeomorphic to V , and hence also to the open

unit disk of V . But the Cn-action on this space is different: if 1n is our generator of Cn, then

1n · 〈v, 1〉 = 〈1n · v, 1n · 1〉 = 〈1n · v, ζ
k
n 〉 = 〈ζ

−k
n (1n · v), 1〉

Thus, this is Cn-homeomorphic to the open unit disc of Φ−k ⊗C V . In other words, the cell we

attached to go from PC(V) to PC(V ⊕ Φk ) is D(Φ−k ⊗C V). �

Remark 3.30. In the case V = 0, we have PC(V) = � and PC(V ⊕ Φk ) = pt, so the disjoint

basepoints are necessary to make the cofiber S0 as desired.

Theorem 3.31. For any quaternionic Cn-representation W and any k, there is a cofiber sequence

PH(W)+ → PH(W ⊕ Ψk )+ → SΦ−k⊗CW .

Thus to form PH(W ⊕ Ψk ) from PH(W), we attach a cell of the form D(Φ−k ⊗C W).

Proof. The argument is essentially identical as for Theorem 3.29. Note that a quaternionic Cn-

representation W is a complex Cn-representation by restriction, so there is no problem forming the

tensor product Φ−k ⊗C W , which is again a complex Cn-representation. �
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Theorem 3.32. For any complex Cn-representation V and any k and r , there is a cofiber sequence

Pr
C(V)+ ↪→ Pr

C(V ⊕ Φk )+ →


S |V(r;C)| if k ≡ r mod n,

pt otherwise.

Proof. When k ≡ r mod n, we have Φk = Φr , and

(V ⊕ Φr )(r;C) � V(r;C) ⊕ Φr

so that by Theorem 3.29, the cofiber of the inclusion is SΦ−r⊗CV(r;C), which is the same as S |V(r;C)|

by Theorem 3.22. When k . r mod n, we have that

(V ⊕ Φk )(r;C) � V(r;C)

so that the inclusion is just the identity map, and its cofiber is therefore just a point. �

Theorem 3.33. For any quaternionic Cn-representation W and any k and r, there is a cofiber

sequence

Pr
H(W)+ ↪→ Pr

H(W ⊕ Ψk )+ →


S |W(r;C)| if k ≡ ±r mod n,

pt otherwise.

Proof. When k ≡ ±r mod n, we have Ψk = Ψr � Φr ⊕Φ−r by Lemma 3.14. If 2r . 0 mod n, then

Pr
H
(W) = PC(W(r;C)) and

(W ⊕ Ψr )(r;C) = (W ⊕ Φr ⊕ Φ−r )(r;C) � W(r;C) ⊕ Φr

so that the result follows from Theorem 3.32. If 2r ≡ 0 mod n, then Pr
H
(W) = PH(W(r;H)) and

(W ⊕ Ψr )(r;H) � W(r;H) ⊕ Ψr
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so that the result follows from Theorem 3.31 and Theorem 3.22. When k . ±r mod n, the inclusion

is just the identity map, and again this implies its cofiber is therefore just a point. �

3.3.3 Fixed points

Theorem 3.34. For any complex Cn-representation V ,

PC(V)Cn =

n−1⊔
r=0

Pr
C(V)

and

PC(V)dCn = PC(n/dV)Cn/d .

Proof. Choosing an isomorphism V �
⊕n−1

r=0 V(r;C), write (v0, v1, . . . , vn−1) for an element of V .

The action of Cn on V is

1n · (v0, v1, . . . , vn−1) = (v0, v1ζn, . . . , vn−1ζ
n−1
n ).

Any element of PC(V) is represented by a v ∈ V \ {0} with vr = 1 for some r . Then 1n · 〈v〉 = 〈v〉

in PC(V) if and only if

(v0, v1ζn, . . . , ζ
r
n, . . . , vn−1ζ

n−1
n ) = (λv0, λv1, . . . , λ, . . . , λvn−1)

for some λ ∈ C×, which happens precisely when λ = ζr
n . This forces vk = 0 for k , r , because

vk ζ
k
n = ζ

k
n vk = ζ

r
nvk

implies (ζ k
n − ζ

r
n )vk = 0, so that v ∈ V(r;C) \ {0}. Moreover, for any v ∈ V(r;C) \ {0}, we do
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indeed have

1n · (0, 0, . . . , v, . . . , 0) = (0, 0, . . . , vζr
n, . . . , 0) = (0, 0, . . . , ζr

nv, . . . , 0) = (0, 0, . . . , λv, . . . , 0).

Thus, PC(V)Cn is a disjoint union of the spaces Pr
C
(V) = PC(V(r;C)). The more general claim for

PC(V)dCn follows from a similar argument as the one in Proposition 3.20. �

Remark 3.35. At least whenV is of countable dimension, we can also see this from the cell structure

of Pr
C
(V) via an inductive argument, since the claim is clearly true for V = 0, and Theorem 3.32

shows how the cells that get added to Pr
C
(V) are of dimension |V(r;C)|, which increases by 2 when

a copy of Φr is added to V .

Theorem 3.36. For any quaternionic Cn-representation W ,

PH(W)Cn =

bn/2c⊔
r=0

Pr
H(W)

and

PH(W)dCn = PH(n/dW)Cn/d .

Proof. Choosing an isomorphism W �
⊕bn/2c

r=0 W(r;H), write (w0,w1, . . . ,wbn/2c) for an element

of W . The action of Cn on W is

1n · (w0,w1, . . . ,wbn/2c) = (w0,w1ζn, . . . ,wbn/2cζ
bn/2c
n ).

Any element of PH(W) is represented by a w ∈ W \ {0} with wr = 1 for some r . Then 1n · 〈w〉 = 〈w〉

in PH(W) if and only if

(w0,w1ζn, . . . , ζ
r
n, . . . ,wbn/2cζ

bn/2c
n ) = (λv0, λv1, . . . , λ, . . . , λvn−1)
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for some λ ∈ H×, which happens precisely when λ = ζr
n . This forces wk = 0 for k , r, because if

we write wk = zk + sk j, then

(zk + sk j)ζ k
n = ζ

k
n zk + ζ

−k
n sk j = ζr

n zk + ζ
r
n sk j = ζr

n (zk + sk j)

implies (ζ k
n − ζ

r
n )zk = 0 and (ζ−k

n − ζr
n )sk = 0, so that w ∈ W(r;H) \ {0}. However, for any

w = z + s j ∈ W(r;H) \ {0}, we have

1n · (0, 0, . . . ,w, . . . , 0) = (0, 0, . . . ,wζr
n, . . . , 0) = (0, 0, . . . , ζr

nw, . . . , 0) = (0, 0, . . . , λw, . . . , 0)

Thus, PH(W)Cn is a disjoint union of the spaces Pr
H
(W) = PH(W(r;C)). The more general claim for

PC(V)dCn follows from a similar argument as the one in Proposition 3.20. �

Remark 3.37. At least whenW is of countable dimension, we can also see this from the cell structure

of Pr
H
(W) via an inductive argument, since the claim is clearly true for W = 0, and Theorem 3.33

shows how the cells that get added to Pr
H
(W) are of dimension |W(r;C)|, which increases by either

4 or 2 when a copy of Ψr is added to W , depending on whether 2r ≡ 0 mod n.
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Chapter 4

Constructing BGSU(2)

4.1 Equivariant principal bundles and classifying spaces

We recall some material from [May96, Chapter VII, p.59]. We allow Π to be any compact Lie group,

but continue with our restriction that G be a finite group.

Definition 4.1. A principal (G,Π)-bundle is a principal Π-bundle p : E → B such that E and B

are G-spaces, p is a G-equivariant map, and the actions of G and Π on E commute.

Remark 4.2. Recall that in a principal Π-bundle p : E → B, the space E has a free right Π-action,

which we write on the left as (π, e) 7→ eπ−1. Thus, having the left action of G and the right action

of Π on E commute is equivalent to having a left (G × Π)-action on E , where (g, π) · e = geπ−1.

By the end of this chapter, we will be most interested in the case where G = Cn and Π = SU(2).

Definition 4.3. A principal (G,Π)-bundle p : E → B is universal if, for any X with the homotopy

type of a G-CW complex, pullback of p along G-maps X → B gives a bijection from [X, B]G to the

set of equivalence classes of (G,Π)-bundles on X . When this is the case, the G-space B = E/Π is

said to be an (equivariant) classifying space for principal (G,Π)-bundles.

Remark 4.4. If Λ < G × Π is a closed subgroup such that Λ ∩ Π is trivial, then

Λ = {(h, ρ(h)) : h ∈ H}

for some subgroup H ≤ G and homomorphism ρ : H → Π. Such a Λ acts on the total space E of a

principal (G,Π)-bundle as in Remark 4.2.
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Recall that the universal principal Π-bundle E → B, is characterized, up to equivalence, by its total

space E being contractible. The following result from [Las82, Thm. 2.14, p.268] generalizes this

fact and allows us to recognize universal principal (G,Π)-bundles.

Theorem 4.5. A principal (G,Π)-bundle E → B is universal if and only if EΛ is contractible for

all closed subgroups Λ < G × Π such that Λ ∩ Π is trivial.

In particular, in a universal principal (G,Π)-bundle E → B, we must have that E itself is contractible,

which leads us to the following corollary.

Corollary 4.6. A universal (G,Π)-bundle p : E → B is also a universal Π-bundle.

This result from [LM86, Theorem 10] describes the H-fixed points of the equivariant classifying

space B(G,Π) for any subgroup H ≤ G as a union of classifying spaces.

Theorem 4.7. For any subgroup H ≤ G, we have

B(G,Π)H =
⊔

B(Π ∩ NG×Π(Λ))

where the union runs over the Π-conjugacy classes of subgroups Λ of G × Π such that Λ ∩ Π = 1

and the image of Λ in G under projection from G × Π is H.

Remark 4.8. In fact, the classifying spaces occurring in this union are other equivariant classifying

spaces, and B(G,Π)H has the structure of a WGH-space, where WGH is the Weyl group NGH/H

(see the paragraph following the theorem in [LM86]). However, we do not have need of this additional

information here.

Remark 4.9. We can use this result to check our computations in Theorem 3.34 and Theorem 3.36.

Let G = Cn, H = dCn, and Π = SO(2) � S1. By Remark 4.4, subgroups Λ of the kind mentioned

in Theorem 4.7 correspond to homomorphisms ρ : dCn → SO(2), which in turn correspond to
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a choice of 0 ≤ k < n/d for ρ(d · 1n) = ζ k
n/d , of which there are n/d. They are all in distinct

conjugacy classes because G × Π is abelian. Moreover, because G × Π is abelian we have that

Π ∩ NG×Π(Λ) = Π ∩ G × Π = Π, so that BCnSO(2)dCn is confirmed to be (non-equivariantly) a

disjoint union of n/d copies of BSO(2) � CP∞.

Now let G = Cn, H = dCn, and Π = SU(2). By Remark 4.4, subgroups Λ of the kind mentioned

in Theorem 4.7 correspond to homomorphisms ρ : dCn → SU(2). Any matrix in SU(2) of finite

order is necessarily diagonalizable, and conjugation by
( 0 −1

1 0
)
has the effect of switching the two

entries on the diagonal, so that up to conjugacy such homomorphisms correspond to a choice of

0 ≤ k < bn/2dc for

ρ(d · 1n) =
©­­«
ζ k
n/d 0

0 ζ−k
n/d

ª®®¬
of which there are bn/2dc. Considering SO(2) as the subgroup of SU(2) consisting of the diagonal

matrices, we have that the normalizer of the cyclic subgroup Λ < Cn × SU(2) is

NCn×SU(2)(Λ) =


SU(2) if ρ(d · 1n) =

(
±1 0
0 ±1

)
SO(2) otherwise

so that BCnSU(2)dCn is confirmed to be (non-equivariantly) a disjoint union of bn/2dc pieces,

with either one or two copies of BSU(2) � HP∞ (two when n/d is even), and the rest copies of

BSO(2) � CP∞.

4.2 A model for BGSU(2)

Definition 4.10. A complete quaternionic G-universe Q is a left H-module that is a direct sum of a

countably infinite number of copies of each irreducible quaternionic G-representation.
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Theorem 4.11. If Q is a complete quaternionic G-universe, then PH(Q) is a model for BGSU(2).

Proof. We claim it is sufficient to prove that, for any closed Λ < G × SU(2) such that Λ ∩ SU(2) is

trivial, there is a quaternionic G-representation V for which VΛ is a non-trivial real subspace of V ,

where the action of G × SU(2) on V is via (g, s) · v = g(sv) for g ∈ G, s ∈ SU(2), and v ∈ V .

Take this claim as given for now, and recall that Remark 4.4 classifies such subgroupsΛ < G×SU(2).

First, let ρ : G → SU(2) be a homomorphism, and let Λ = {(g, ρ(g)) : g ∈ G}. Define the

quaternionic G-representation V to be H, with action ϕ : G × V → V defined by ϕ(g, v) = vρ(g)−1,

which is left H-linear as required. Then the action of Λ on V is

(g, ρ(g)) · v = g(ρ(g)v) = ρ(g)vρ(g)−1,

so at least the real subspace of V = H spanned by the element 1 ∈ H is fixed. Thus, for such

subgroups Λ, we have found an irreducible G-representation V for which VΛ is a non-trivial real

subspace of V .

More generally, if Λ is formed by taking a subgroup H < G and a homomorphism ρ : H → SU(2)

so that Λ = {(h, ρ(h)) : h ∈ H}, then we can similarly define the quaternionic H-representation

W to be H, with action ϕ : H ×W → W defined by ϕ(h,w) = wρ(h)−1, and consider the induced

quaternionic G-representation V = indG
HV , since its subspace W is invariant under the action of Λ,

and hence the fixed real subspace of W is also a fixed real subspace of V .

Now we will prove our earlier claim that this is sufficient. Let S(Q) be the unit sphere of Q, and recall

that the unit sphere in the quaternions is S(H) = SU(2). There is a left G-action on S(Q), which

comes from Q being a G-representation, and there is a right SU(2)-action on S(Q), which comes

from scalar multiplication, (q, u) 7→ u−1q for q ∈ S(Q) and u ∈ SU(2). These actions commute

because the left G-action on a quaternionic G-representation must be left H-linear.
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Observe that the quotient of S(Q) by the right SU(2)-action is PH(Q), and the quotient map

p : S(Q) → PH(Q) is G-equivariant. Thus p is a principal (G, SU(2))-bundle, and by Remark 4.2,

we can consider S(Q) as a left (G × SU(2))-space, where (g, s) · q = g(sq) for g ∈ G, s ∈ SU(2),

and q ∈ S(Q).

Consider Q as a left (G×SU(2))-space with the same action. Then for any subgroup Λ ≤ G×SU(2),

S(Q)Λ = QΛ ∩ S(Q) = S(QΛ).

In fact, QΛ is a real subspace of Q, because for any q1, q2 ∈ QΛ and any (g, s) ∈ Λ we have

(g, s) · (q1+ q2) = g(s(q1+ q2)) = g(sq1+ sq2) = g(sq1)+ g(sq2) = (g, s) · q1+ (g, s) · q2 = q1+ q2

and for any q ∈ QΛ, any r ∈ R, and any (g, s) ∈ Λ we have

(g, s) · (rq) = g(s(rq)) = g((sr)q) = g((rs)q) = rg(sq) = rq

because the action of G is left H-linear, and real numbers commute with any quaternion.

If QΛ is an infinite-dimensional real subspace of Q for a given Λ ≤ G × SU(2), then S(Q)Λ is an

infinite-dimensional sphere, and hence contractible. Thus, if we prove that QΛ is infinite-dimensional

for all closed Λ < G × SU(2) such that Λ ∩ SU(2) is trivial, then Theorem 4.5 implies that the

map p : S(Q) → PH(Q) is a universal principal (G, SU(2))-bundle, and we can conclude that PH(Q)

is a model for BGSU(2). Therefore, we can conclude that given such a subgroup Λ, if there is

any quaternionic G-representation V such that VΛ is a non-trivial real subspace of V , then QΛ is

infinite-dimensional because Q contains infinitely many isomorphic copies of V . �

Remark 4.12. Observe that non-equivariantly, PH(Q) is HP∞, which is a model of BSU(2). This is

consistent with Corollary 4.6.
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4.3 A properly even Cn-cell complex structure for BCnSU(2)

Definition 4.13. Given a quaternionic Cn-representation W of countable dimension, a split full

flag of W is a collection U of irreducible quaternionic subrepresentations {Uk }k≥0 of W such that

W =
⊕

k≥0 Uk . For any split full flag U of W , define Uk =
⊕k−1

i=0 Ui , so that Uk+1 = Uk ⊕Uk . Let

pt = PH(U1) ⊆ PH(U2) ⊆ · · · ⊆ PH(W)

be the U-filtration of PH(W). Lastly, let uk be Φ−r ⊗C Uk considered as a real representation, where

r is determined by Uk � Ψr .

Remark 4.14. Note that r is only determined up to sign modulo n, since Ψr � Ψ−r , and even though

Φr � Φ−r as complex Cn-representations, this does not introduce any ambiguity in uk , which is

considered as a real representation.

Proposition 4.15. IfU is a split full flag of a quaternionic Cn-representationW , then theU-filtration

of PH(W) defines a Cn-cell complex structure on PH(W), where exactly one cell D(uk ) is attached

to PH(Uk ) to construct PH(Uk+1).

Proof. This follows directly from Theorem 3.31. �

Definition 4.16. Let Q be a complete quaternionic Cn-universe, and letW be the split full flag on

Q defined by Wk = Ψk , so thatWk =
⊕k−1

i=0 Ψi and

wk = Φ−k ⊗C Wk = Φ−k ⊗C

k−1⊕
i=0

Ψi �
k−1⊕
i=0
(Φi−k ⊕ Φ−i−k ).

Lemma 4.17. With W as in Definition 4.16, we have

|w
Cn
k | = |Wk (k;C)| = 4

⌊
k
n

⌋
+ 2

⌊
2(k − bk/ncn)

n + 1

⌋
.
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This quantity is non-decreasing with k.

Proof. By Theorem 3.22,

|w
Cn
k | = |(Φ−k ⊗C Wk )

Cn | = |Wk (k;C)|.

Observe that by Theorem 3.15, Wan =
⊕an−1

i=0 Ψi contains a copies of Ψi when 2i ≡ 0 mod n, and

2a copies of Ψi otherwise. By Proposition 3.18, we conclude that |Wan(k;C)| = 4a for any k and a.

Again using Theorem 3.15, we have that for any k,

Wk � Wbk/ncn ⊕Wk−bk/ncn,

so that

|Wk (k;C)| = 4bk/nc + |Wk−bk/ncn(k;C)|.

Because k ≡ k − bk/ncn mod n, we have that

Wk−bk/ncn(k;C) =Wk−bk/ncn(k − bk/nc;C),

so now all that remains to compute the quantity |Wk (k;C)| in general is to do so in the case that

0 ≤ k ≤ n − 1. It is straightforward to check that when 0 ≤ k ≤ n − 1,

|Wk (k;C)| =


0 if k ≤ b n2c,

2 otherwise

 = 2
⌊ 2k

n+1
⌋

Therefore the quantity

|w
Cn
k | = |Wk (k;C)| = 4

⌊
k
n

⌋
+


0 if k − bk/ncn ≤ b n2c,

2 otherwise
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= 4
⌊

k
n

⌋
+ 2

⌊
2(k − bk/ncn)

n + 1

⌋
is non-decreasing with k. �

Theorem 4.18. Let Q be a complete quaternionic Cn-universe, and let W be the split full flag on Q

from Definition 4.16. Then theW-filtration of PH(Q) is a properly even Cn-cell complex structure.

Proof. We know that the cell added to go from PH(Wk ) to PH(Wk+1) is D(wk ), and we can check

each condition from Definition 2.51, although condition (b) is the only one requiring any work.

(a) For any group G and any finite-dimensional complex G-representation V , we must have that

|V H | is even for any subgroup H ≤ G, because V H will be a complex subrepresentation of V .

Observe that wk is just
⊕k−1

i=0 (Φi−k ⊕ Φ−i−k ) considered as a real Cn-representation, but that

the aforementioned fact is still true about wk . Thus, every cell D(wk ) is even.

(b) In order to prove the desired property of the filtration, it will suffice to show that wk � wk+1

for every positive integer k. Because |wk | = 4k, we have that

|w
nCn
k | = 4k < 4k + 4 = |wnCn

k+1 |

for the trivial subgroup nCn ≤ Cn. Therefore, to prove that wk � wk+1 for a given n and k,

we must establish that |wdCn
k | ≤ |w

dCn
k+1 | for every d | n.

We have established the result for any n and k, with d = 1, in Lemma 4.17.

Continuing the notational pattern established in Subsection 3.2.3, we will now write nwk ,

instead of just wk , to indicate which Cn we are working over. Thus, we can write nWk �⊕k−1
i=0 nΨi and nwk = nΦ−k ⊗C nWk , for example.
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For d | n with d > 1, we have by Proposition 3.20 that

|nw
dCn
k | = |n/dw

Cn/d

k |

which reduces the problem to the case we have already shown.

(c) By our work for part (b), we know that for any positive integer a, |Wan(i;C)| ≥ 2a for any i,

so that the same is true of Wk for any k ≥ an, and thus wk = Φ−k ⊗C Wk contains at least

2a copies of Φ0, which implies |wCn
k | ≥ 2a, and hence |wdCn

k | ≥ 2a as well. Thus, for any N ,

there are only finitely many cells D(wk ) with |w
dCn
k | ≤ N for all subgroups dCn ≤ Cn.

(d) We start with exactly one point PH(W1) = pt and add one cell D(wk ) at a time, so each

PH(Wk ) is a finite Cn-cell complex. �

Remark 4.19. If we define U to be the split full flag on Q defined by Uk = Ψk mod (bn/2c+1), so

that figuratively, the irreducibles in Q are put in order like Ψ0 ⊕ Ψ1 ⊕ · · · ⊕ Ψb n2 c
⊕ Ψ0 ⊕ Ψ1 ⊕ · · · ,

then the U-filtration of PH(Q) is not properly even (except when n = 2).

Remark 4.20. The geometric meaning of a properly even cell structure is described here from

[Lew88, p.72]. Though he states it for the complex projective space of a complex Cp-representation,

it remains true in the quaternionic case.

The G-fixed subspace of P(Φ) is a disjoint union of complex projective spaces,

one for each isomorphism class of irreducibles in Φ. The (complex) dimension of the

complex projective space in P(Φ)G associated to the irreducible φ is one less than the

multiplicity of φ in Φ. Thus, the effect of properly ordering the irreducibles is that

the maximal dimension of the components of the G-fixed subspace of P({φi}0≤i≤k )

increases as slowly as possible with increasing k.
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Chapter 5

Additive Structure of H̃∗G(BGSU(2)+; A)

5.1 Dimensions of generators

Here, we can record the following result about the additive structure of H̃∗G(BGSU(2)+; A) for those

groups G about which an even-dimensional freeness result has been established.

Theorem 5.1. Let G = Cp for any prime p, or Cpq for distinct odd primes p, q. As a module over

H̃∗G(S
0; A), the cohomology H̃∗G(BGSU(2)+; A) is free, and decomposes as a direct sum

H̃∗G(BGSU(2)+; A) �
⊕
k≥0

Σ
wk H̃∗G(S

0; A)

where the wk are the representations introduced in Definition 4.16.

Proof. We directly combine Theorem 2.52 about even-dimensional freeness and Theorem 4.18

proving that theW-filtration gives a properly even Cn-cell structure on BCnSU(2). �

In Figure 5.1, we have placed a red circle at the points (|wCp

k |, |wk |) for 1 ≤ k ≤ 8. That is, we

have marked certain information about the dimensions α ∈ RO(Cp) in which there is a generator of

H̃∗Cp
(BCpSU(2)+; A) as an H̃∗Cp

(S0; A)-module.

Observe that with a different choice of split full flag, we would end up with generators in

different dimensions in RO(Cp). However, because the resulting H̃∗Cp
(S0; A)-module structure

of H̃∗Cp
(BCpSU(2)+; A) would have to be isomorphic to the one described in Theorem 5.1, the

generators would have to be in dimensions α with the same values of (|αCp |, |α |). That is, the

resulting diagram would have the red circles in the same locations.
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We see an interesting phenomenon for odd primes p, which is due to the following fact: even

though the Cp-cell complex structure on BCpSU(2) adds the irreducible quaternionic representations

“in order” Ψ0,Ψ1,Ψ2, . . ., this adds irreducible complex representations (of which there are an

odd number) in pairs and “out of order”, so that it takes p cells until all irreducible complex

representations are present in an equal amount.

5.2 Inverse limit

Theorem 5.2. With Q a complete quaternionic Cp-universe, andW the split full flag of Q defined

in Theorem 4.18, we have that

H̃∗Cp
(PH(Q)+; A) = lim

←−−
n

H̃∗Cp
(PH(Wn)+; A).

Proof. Theorem 2.52 implies that H̃∗Cp
(PH(Wn)+; A) is a direct summand of H̃∗Cp

(PH(Wn+1)+; A)

for every n, with the map

H̃∗Cp
(PH(Wn+1)+; A) → H̃∗Cp

(PH(Wn)+; A)

being left inverse to the inclusion, and therefore surjective. Thus, lim
←−−

n

1H̃∗Cp
(PH(Wn)+; A) = 0, so

that the map H̃∗Cp
(PH(Q)+; A) → lim

←−−
n

H̃∗Cp
(PH(Wn)+; A) is an isomorphism. �
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Figure 5.1: The equivariant dimensions α in which additive generators of the cohomology
H̃∗Cp
(BCpSU(2)+; A) occur, plotted according to |αCp | and |α |. Dimensions of elements of RO(Cp)

are plotted with dots, whereas points not corresponding to any element of RO(Cp) are left blank.
Observe the uneven stair pattern for odd primes p.
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Chapter 6

Multiplicative Structure of H̃∗C2
(BC2SU(2)+; A)

In this chapter, we will establish the complete multiplicative structure of H̃∗C2
(BC2SU(2)+; A) in

Theorem 6.11.

6.1 Preliminaries and notation

In this section, we will set notation for important maps arising in the cohomology of PH(Q), where Q

is a complete quaternionicCp-universe, for any prime p. This draws on knowledge about quaternionic

Cp-representations and their projective spaces from Chapter 2, in particular the structure of the fixed

points PH(Q)Cp . In the subsequent sections, we study the case of p = 2 and establish Theorem 6.11.

Definition 6.1. The maps qr and qr
n are defined to be the inclusions

Pr
H
(Q)+ PH(Q)+,

qr
Pr
H
(Wn)+ PH(Wn)+

qrn

arising from the inclusions of the isotypical components Q(r;H) ↪→ Q and Wn(r;H) ↪→ Wn,

respectively.

Definition 6.2. The maps bn and br
n are defined to be the inclusions

PH(Wn)+ PH(Wn+1)+,
bn Pr

H
(Wn)+ Pr

H
(Wn+1)+

brn

arising from the inclusions of the subrepresentationsWn ↪→Wn+1 and their isotypical components,

respectively.
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Definition 6.3. The maps πn and πr
n are defined to be the cofibers of bn and br

n, respectively, shown

in the figure below together with the other maps defined so far, as well as another map χr
n.

PH(Wn)+ PH(Wn+1)+ Swn

Pr
H
(Wn)+ Pr

H
(Wn+1)+ Zr

n

bn πn

brn

qrn

πrn

qr
n+1 χrn

Figure 6.1: Two important cofiber sequences

By Theorem 3.31, the cofiber of the inclusion bn is Swn . Keeping in mind thatWn(n;C) =Wn(r;C)

when n ≡ ±r mod p due to Theorem 3.15, by Theorem 3.33 and Lemma 4.17 we have that the

cofiber of the inclusion br
n is

Zr
n =


S |Wn(n;C)| if n ≡ ±r mod p,

pt otherwise

=


S4bn/pc+2b2(n−bn/pcp)/(p+1)c if n ≡ ±r mod p,

pt otherwise

where wn is as introduced in Definition 4.16. Finally, the map χr
n comes from the general fact that

an inclusion of pairs (X, A) ↪→ (Y, B) induces an inclusion B/A ↪→ Y/X .

Definition 6.4. The maps Bn and Br
n are defined to be the inclusions

PH(Wn)+ PH(Q)+,
Bn Pr

H
(Wn)+ Pr

H
(Q)+

Br
n

arising from the inclusions of the subrepresentations Wn ↪→ Q and their isotypical components,

respectively.
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We have shown the commutative diagram of Mackey functors induced by all of these maps in

Figure 6.2. Note in particular that because theW-filtration is a properly even Cp-cell structure, the

boundary maps in cohomology induced by the cofiber sequences in Figure 6.1 will be zero, which

gives the short exact sequences shown.

H̃α
G(PH(Q)+)

0 H̃α
G(S

wn) H̃α
G(PH(Wn+1)+) H̃α

G(PH(Wn)+) 0

0 H̃α
G(Z

r
n) H̃α

G(P
r
H
(Wn+1)+) H̃α

G(P
r
H
(Wn)+) 0

H̃α
G(P

r
H
(Q)+)

(Bn+1)
∗

(Bn)
∗

(χrn)
∗

(πn)
∗ (bn)∗

(qr
n+1)

∗
(qrn)

∗

(πrn)
∗ (brn)

∗

(Br
n+1)

∗

(Br
n)
∗

Figure 6.2: Some important maps in cohomology

Definition 6.5. Recall the symbols • and ☼ from Remark 2.36. Define ρ, ρn, ρr
n, and ρ̂n to be the

restriction maps in the Mackey functors

H̃α
Cp
(PH(Q)+)(•)

H̃α
Cp
(PH(Q)+)(☼)
ρ

H̃α
Cp
(PH(Wn)+)(•)

H̃α
Cp
(PH(Wn)+)(☼)

ρn

H̃α
Cp
(Pr
H
(Wn)+)(•)

H̃α
Cp
(Pr
H
(Wn)+)(☼)

ρrn

H̃α
Cp
(Swn)(•)

H̃α
Cp
(Swn)(☼)

ρ̂n

The dependence on α is left implicit.

Remark 6.6. For a complex Cn-representation V and a quaternionic Cn-representation W , non-

equivariantly we have that

PC(V) � CP
|V |
2 −1, PH(W) � HP

|W |
4 −1.
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Therefore

PH(Q) � HP∞, PH(Wn) � HPn−1,

Pr
H(Q) �


HP∞ if 2r ≡ 0 mod n,

CP∞ otherwise,
Pr
H(Wn) �


HP

|Wn(r ;C) |
4 −1 if 2r ≡ 0 mod n,

CP
|Wn(r ;C) |

2 −1 otherwise.

The cohomology rings of complex and quaternionic projective spaces are classically known.

Definition 6.7. We will make a choice of the following generators.

• Fix an element x ∈ H̃4(PH(Q)+) for which H̃∗(PH(Q)+) � Z[x].

• If 2r ≡ 0 mod p, fix an element xr ∈ H̃4(Pr
H
(Q)+) for which H̃∗(Pr

H
(Q)+) � Z[xr ].

• If 2r . 0 mod p, fix an element yr ∈ H̃2(Pr
H
(Q)+) for which H̃∗(Pr

H
(Q)+) � Z[yr ].

Remark 6.8. In light of Remark 2.56, we will view x as an element of H̃∗Cp
(PH(Q)+)(☼) when

|∗| = 4, and view the map

(Bn)
∗ : H̃∗Cp

(PH(Q)+)(☼) → H̃∗G(PH(Wn)+)(☼)

as being the quotient map Z[x] → Z[x]/(xn).

Remark 6.9. In light of Theorem 2.57, we will view xr as an element of H̃4
Cp
(Pr
H
(Q)+)(•) when

2r ≡ 0 mod p, and view the map

(Br
n)
∗ : H̃∗Cp

(Pr
H(Q)+) → H̃∗G(P

r
H(Wn)+)

as being the quotient map H̃∗G(S
0) ⊗ Z[xr ] → H̃∗G(S

0) ⊗ Z[xr ]/(xd
r ) where d is the appropriate

power for that value of n. Similarly for yr when 2r . 0 mod p, except with 2 instead of 4.
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6.2 Some specifics for p = 2

In Section 6.1, we established notation for several important objects related to the cohomology of

PH(Q), as well as maps between them, without making any restriction on the prime p. Starting with

this section, we focus on the case p = 2.

Observe that with p = 2, we have

Wn =
n−1⊕
k=0

Ψk � Ψ
dn/2e
0 ⊕ Ψ

bn/2c
1 ,

and therefore

wn = Φ−n ⊗C Wn � Ψ
bn/2c
0 ⊕ Ψ

dn/2e
1 = 4b n2c + 4dn2eσ.

Consequently, when n ≡ ±r mod 2 (indeed, when n ≡ r mod 2), we have

Zr
n = S |Wn(r;C)| =


S4dn/2e if n is even,

S4bn/2c if n is odd

 = S4bn/2c,

which we could also see by applying the formula from Definition 6.3 with p = 2. In this case, the

map χr
n : Zr

n ↪→ Swn induces multiplication by ε4dn/2e , where ε is as in Definition 2.44.

Lastly, for later convenience, we will also make the following definition.

Definition 6.10. Let δr =


0 if r ≡ 0 mod 2,

ε4 if r ≡ 1 mod 2,
where ε is as in Definition 2.44.

6.3 Outline of main theorem

In the subsequent sections, we will prove the following result.
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Theorem 6.11. As an algebra over H̃∗C2
(S0; A), the cohomology H̃∗C2

(BC2SU(2)+; A) is generated

by two elements c ∈ H̃4σ
C2
(BC2SU(2)+; A) and C ∈ H̃4+4σ

C2
(BC2SU(2)+; A), satisfying the relation

c2 = ε4c + ξ2C,

where ε ∈ H̃σ
C2
(S0; A) and ξ ∈ H̃2σ−2

C2
(S0; A) are from Definitions 2.44 and 2.46, respectively.

Broadly speaking, the proof will proceed in four steps:

• construct the element c (Section 6.4),

• construct the element C (Section 6.5),

• prove that together they generate H̃∗C2
(BC2SU(2)+; A) (Section 6.6), and

• establish the relation between them (Section 6.7).

6.4 Construction of the generator c in dimension 4σ

In this section, we will identify and construct the element c in the cohomology Mackey functor

H̃4σ
C2
(PH(Q)+)(•), one of the two elements we claim are generators in Theorem 6.11.

To identify the element c, we provide the information shown to be sufficient in Remark 2.58, i.e., its

images under ρ, (q0)∗, and (q1)∗. The element c ∈ H̃4σ
C2
(PH(Q)+)(•) has

(q0)∗(c) = δ0 + ξ
2x0,

(q1)∗(c) = δ1 + ξ
2x1,

ρ(c) = x.
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To construct the element c, i.e., to prove that an element as specified above really does exist, our

goal will be to inductively construct elements cn ∈ H̃4σ
G (PH(Wn)+)(•), each such that

(q0
n)
∗(cn) = (B0

n)
∗(δ0 + ξ

2x0),

(q1
n)
∗(cn) = (B1

n)
∗(δ1 + ξ

2x1),

ρn(cn) = (Bn)
∗(x).

Since theWn are a cofinal collection of finite-dimensional sub-H-modules of Q, and since

(Br
n)
∗ ◦ (qr )∗ = (qr

n)
∗ ◦ (Bn)

∗,

by Theorem 5.2 this process yields an element c ∈ H̃4σ
C2
(PH(Q)+)(•) with

(q0)∗(c) = δ0 + ξ
2x0,

(q1)∗(c) = δ1 + ξ
2x1,

ρ(c) = x

as desired.

First, Lemma 6.12 will provide a base case by constructing an element c2 with the specified

properties, then Theorem 6.13 will perform the main work of proving the inductive step, that an

element cn can always be lifted to an element cn+1.

Lemma 6.12. An element c2 ∈ H̃4σ
C2
(PH(W2)+)(•) exists with the following properties:

(q0
2)
∗(c2) = (B

0
2)
∗(δ0 + ξ

2x0),

(q1
2)
∗(c2) = (B

1
2)
∗(δ1 + ξ

2x1),

ρ2(c2) = (B2)
∗(x).
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Proof. The proof may be broken into sections.

Define the element c2

First, note that Sw1 = S4σ.

Let c2 ∈ H̃4σ
G (PH(W2)+)(•) be the image of 1 ∈ A(•) � H̃4σ

G (S
4σ)(•) under (π1)

∗.

Check the value of (q0
2)
∗(c2)

We have that Z0
1 = pt, so within Figure 6.2 we find the commutative square of Mackey functors

H̃4σ
C2
(S4σ) H̃4σ

C2
(PH(W2)+)

H̃4σ
C2
(pt) H̃4σ

C2
(P0
H
(W2)+)

(χ0
1 )
∗

(π1)
∗

(q2
0)
∗

(π0
1)
∗

Since H̃4σ
C2
(pt) = 0, we have that (q0

2)
∗(c2) = 0.

Note that (B0
2)
∗(δ0 + ξ

2x0) = (B0
2)
∗(ξ2x0) = 0 by Remark 6.9.

Check the value of (q1
2)
∗(c2)

We have that Z1
1 = S0, so within Figure 6.2 we find the commutative square of Mackey functors
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H̃4σ
C2
(S4σ) H̃4σ

C2
(PH(W2)+)

H̃4σ
C2
(S0) H̃4σ

C2
(P1
H
(W2)+)

(χ1
1 )
∗

(π1)
∗

(q2
1)
∗

(π1
1)
∗

Since (π1
1)
∗ is an isomorphism of H̃∗C2

(S0)-algebras and χ1
1 is the inclusion S0 → S4σ, we have

that (q1
2)
∗(c2) = ε

4 (see Definition 2.44).

Note that (B1
2)
∗(δ1 + ξ

2x1) = (B1
2)
∗(ε4 + ξ2x1) = ε

4 by Remark 6.9.

Check the value of ρ2(c2)

Within Figure 6.2 we find the maps (π1)
∗ and (B2)

∗, which we expand into their • and ☼ levels.

H̃4σ
C2
(PH(Q)+)(•)

H̃4σ
C2
(PH(Q)+)(☼)

H̃4σ
C2
(S4σ)(•) H̃4σ

C2
(PH(W2)+)(•)

H̃4σ
C2
(S4σ)(☼) H̃4σ

C2
(PH(W2)+)(☼)

ρ

(B2)
∗

ρ̂1 ρ2(π1)
∗

Non-equivariantly, we have

PH(Q)+ � HP∞+ , PH(W2)+ � HP1
+ � S4

+, S4σ � S4
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and π1 is just the map S4
+ → S4 that is the identity on S4 while gluing the disjoint basepoint

somewhere. By Remark 2.56, the☼ level of this diagram just reflects what happens in non-equivariant

cohomology:

H̃4(HP∞)

H̃4(S4) H̃4(HP1
+)

(B2)
∗

(π1)
∗

namely, that (π1)
∗ sends the generator 1 ∈ H̃4(S4) to the generator (B2)

∗(x) ∈ H̃4(HP1
+).

Because H̃4σ
C2
(S4σ) � H̃0

C2
(S0) � A, we can see that ρ̂1 sends the element 1 ∈ H̃4σ

C2
(S4σ)(•) to the

element 1 ∈ H̃4σ
C2
(S4σ)(☼) � H̃4(S4) (see Definition 2.38), so that

ρ2(c2) = ρ2((π1)
∗(1)) = (π1)

∗(ρ̂1)(1) = (B2)
∗(x). �

Now we prove the inductive step, that an element cn with the desired properties can always be lifted

to an element cn+1 with the desired properties.

Theorem 6.13. If cn ∈ H̃4σ
C2
(PH(Wn)+)(•) exists, then cn+1 ∈ H̃4σ

C2
(PH(Wn+1)+)(•) exists.

Proof. Suppose that a class cn ∈ H̃4σ
C2
(PH(Wn)+)(•) has been defined with

(q0
n)
∗(cn) = (B0

n)
∗(δ0 + ξ

2x0),

(q1
n)
∗(cn) = (B1

n)
∗(δ1 + ξ

2x1),

ρn(cn) = (Bn)
∗(x),

for some n ≥ 2.
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Existence and uniqueness of an element cn+1

We will lift the class cn ∈ H̃4σ
C2
(PH(Wn)+)(•) along the map (bn)

∗, which fits into an exact sequence

of abelian groups

0 H̃4σ
C2
(Swn)(•) H̃4σ

C2
(PH(Wn+1)+)(•) H̃4σ

C2
(PH(Wn)+)(•) 0

(πn)
∗ (bn)∗

From Section 6.2, we have |wn | = 4n ≥ 8 and |wC2
n | = 4b n2c ≥ 4 because n ≥ 2, and therefore

|4σ −wn | ≤ 4 − 8 = −4, |(4σ −wn)
C2 | ≤ 0 − 4 = −4

so that by considering Figure 2.1,

H̃4σ
C2
(Swn)(•) � H̃4σ−wn

C2
(S0)(•) = 0.

Therefore (bn)
∗ is an isomorphism in dimension 4σ, and there is exactly one lifting of cn along the

map (bn)
∗, which we will define to be our element cn+1.

Check the value of ρn+1(cn+1)

For clarity, we expand the maps (bn)
∗, (Bn)

∗, and (Bn+1)
∗ into their • and ☼ levels.
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H̃4σ
C2
(PH(Q)+)(•)

H̃4σ
C2
(PH(Q)+)(☼)

H̃4σ
C2
(PH(Wn+1)+)(•) H̃4σ

C2
(PH(Wn)(•)

H̃4σ
C2
(PH(Wn+1)+)(☼) H̃4σ

C2
(PH(Wn)(☼)

ρ

(Bn+1)
∗

(Bn)
∗

ρn+1 ρn(bn)∗

Non-equivariantly, we have

PH(Q)+ � HP∞+ , PH(Wn+1)+ � HPn
+, PH(Wn)+ � HPn−1

+

and bn is the inclusion map HPn−1
+ → HPn

+ that adds a 4n-cell to HPn−1
+ . By Remark 2.56, the ☼

level of this diagram reflects what happens in non-equivariant cohomology:

H̃4(HP∞+ )

H̃4(HPn
+) H̃4(HPn−1

+ )

(Bn+1)
∗

(Bn)
∗

(bn)∗
�

namely, that the map (bn)
∗ is an isomorphism in dimension 4, and sends the generator (Bn+1)

∗(x) ∈

H̃4(HPn
+) to the generator (Bn)

∗(x) ∈ H̃4(HPn−1
+ ).

By the induction hypothesis we know that ρn(cn) = (Bn)
∗(x), and because cn+1 is a lift of cn along

(bn)
∗, we can conclude ρn+1(cn+1) = (Bn+1)

∗(x), as desired.
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Check the value of (qr
n+1)

∗(cn+1) for n . r mod 2

Since n . r mod 2, we have that Zr
n = pt, so that H̃4σ

C2
(Zr

n) = 0, and hence (br
n)
∗ is an isomorphism

in dimension 4σ. Now the relevant piece of Figure 6.2 is

H̃4σ
C2
(PH(Wn+1)+) H̃4σ

C2
(PH(Wn)+)

H̃4σ
C2
(Pr
H
(Wn+1)+) H̃4σ

C2
(Pr
H
(Wn)+)

H̃4σ
C2
(Pr
H
(Q)+)

(bn)∗

(qr
n+1)

∗
(qrn)

∗

(brn)
∗

�

(Br
n+1)

∗

(Br
n)
∗

By our inductive hypothesis, we know that (qr
n)
∗(cn) = (Br

n)
∗(δr + ξ

2xr ), so we can conclude

(br
n)
∗ ◦ (qr

n+1)
∗(cn+1) = (q

r
n)
∗ ◦ (bn)

∗(cn+1)

(br
n)
∗ ◦ (qr

n+1)
∗(cn+1) = (q

r
n)
∗(cn)

(br
n)
∗ ◦ (qr

n+1)
∗(cn+1) = (B

r
n)
∗(δr + ξ

2xr )

(qr
n+1)

∗(cn+1) = ((b
r
n)
∗)−1 ◦ (Br

n)
∗(δr + ξ

2xr )

(qr
n+1)

∗(cn+1) = (B
r
n+1)

∗(δr + ξ
2xr )

which is what is desired.

Check the value of (qr
n+1)

∗(cn+1) for n ≡ r mod 2

Since n ≡ r mod 2, we have that Zr
n = S4bn/2c by Section 6.2. Because n ≥ 2, we have 4b n2c ≥ 4.

We now consider this section of Figure 6.2.
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0 H̃4σ
C2
(S4bn/2c) H̃4σ

C2
(Pr
H
(Wn+1)+) H̃4σ

C2
(Pr
H
(Wn)+) 0

H̃4σ
C2
(Pr
H
(Q)+)

(πrn)
∗ (brn)

∗

(Br
n+1)

∗

(Br
n)
∗

If in fact 4b n2c > 4, then it must be at least 8, hence

��4σ − 4b n2c
�� ≤ 4 − 8 = −4,

��(4σ − 4b n2c)
C2

�� ≤ 0 − 8 = −8.

By considering Figure 2.1, we see that

H̃4σ
C2
(S4b n2 c) � H̃

4σ−4b n2 c
C2

(S0) = 0,

so that (br
n)
∗ is an isomorphism,which implies (qr

n+1)
∗(cn+1) is the desired value of (Br

n+1)
∗(δr+ξ

2xr )

by the same argument as in the previous section.

If instead 4b n2c = 4, then it must be the case that n = 2 or 3, so that – equivariantly, since these

spaces have a trivial G-action – we have

Zr
n � S4, Pr

H(Wn+1)+ � HP1
+, Pr

H(Wn)+ � HP0
+

and hence our diagram is

0 H̃4σ
C2
(S4) H̃4σ

G (HP1
+) H̃4σ

C2
(HP0
+) 0

H̃4σ
C2
(HP∞+ )

(πrn)
∗ (brn)

∗

(Br
n+1)

∗

(Br
n)
∗
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Note that |4σ − 4| = 0 and |(4σ − 4)C2 | = −4, so by observing Figure 2.1, we see that

H̃4σ
C2
(S4) � H̃4σ−4

C2
(S0) � R.

By Definition 2.46, we see that ξ2 is the generator of R(•) � Z. In non-equivariant cohomology,

the map (πr
n)
∗ : H̃4(S4) → H̃4(HP1

+) sends the generator 1 to the generator (Br
n+1)

∗(xr ), so by

Remark 6.9, we conclude that the map

(πr
n)
∗ : H̃4σ

C2
(S4) � H̃4σ−4

C2
(S0) ⊗ H̃4(S4) → H̃4σ−4

C2
(S0) ⊗ H̃4(HP1

+) ⊆ H̃4σ
C2
(HP1
+)

sends the generator ξ2 ∈ H̃4σ
C2
(S4)(•) � R(•) to the element (Br

n+1)
∗(ξ2xr ) ∈ H̃4σ

C2
(HP1
+)(•).

By our induction hypothesis,

((br
n)
∗ ◦ (qr

n+1)
∗)(cn+1) = (q

r
n)
∗(cn) = (Br

n)
∗(δr + ξ

2xr )

and therefore (qr
n+1)

∗(cn+1) is a lift of (Br
n)
∗(δr + ξ

2xr ) along the map (br
n)
∗. Of course, the lift we

would like it to be is precisely (Br
n+1)

∗(δr + ξ
2xr ).

Because Pr
H
(Wn)+ � HP0

+, we have that (Br
n)
∗(xr ) = 0 (see Remark 6.9). Thus (Br

n)
∗(δr+ξ

2xr ) = δr ,

and therefore, a priori, the value of a lift of (Br
n)
∗(δr + ξ

2xr ) along the map (br
n)
∗ could be

(Br
n+1)

∗(δr + kξ2xr ) for any k ∈ Z, since the image of (πr
n)
∗ is the kernel of (br

n)
∗.

Consider the map (qr
n+1)

∗ in Figure 6.2, expanded into its • and ☼ components.
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H̃4σ
C2
(PH(Wn+1)+)(•)

H̃4σ
C2
(PH(Wn+1)+)(☼)

H̃4σ
C2
(Pr
H
(Wn+1)+)(•)

H̃4σ
C2
(Pr
H
(Wn+1)+)(☼)

ρn+1

(qr
n+1)

∗

ρr
n+1

Again by Remark 2.56, the ☼ level of this diagram just reflects what happens in non-equivariant

cohomology:

H̃4(HPn
+)

H̃4(HP1
+)

(qr
n+1)

∗

namely, that the map (qr
n+1)

∗ is an isomorphism in dimension 4, and sends the generator (Bn+1)
∗(x) ∈

H̃4(HPn
+) � Z to the generator (ρr

n+1)
∗((Br

n+1)
∗(ξ2xr )) ∈ H̃4(HP1

+) � Z.

However, we have already established that (ρn+1)
∗(cn+1) = (Bn+1)

∗(x), and therefore

(ρr
n+1)

∗((qr
n+1)

∗(cn+1)) = (q
r
n+1)

∗((ρn+1)
∗(cn+1))

= (qr
n+1)

∗((Bn+1)
∗(x))

= (ρr
n+1)

∗((Br
n+1)

∗(ξ2xr ))

Because ρr
n+1 is an isomorphism (see the definition of R in Definition 2.38), the value of
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(qr
n+1)

∗(cn+1), which we showed must be (Br
n+1)

∗(δr + kξ2xr ) for some k ∈ Z, must in fact

be (Br
n+1)

∗(δr + ξ
2xr ), as desired. �

6.5 Construction of the generator C in dimension 4 + 4σ

In this section, we will identify and construct the element C in the cohomology Mackey functor

H̃4+4σ
C2
(PH(Q)+)(•), the other of the two elements we claim are generators in Theorem 6.11.

To identify the element C, we provide the information shown to be sufficient in Remark 2.58, i.e., its

images under ρ, (q0)∗, and (q1)∗. The element C ∈ H̃4+4σ
C2
(PH(Q)+)(•) has

(q0)∗(C) = x0(ε
4 + ξ2x0),

(q1)∗(C) = x1(ε
4 + ξ2x1),

ρ(C) = x2.

To construct the element C, i.e., to prove that an element as specified above really does exist, our

goal will be to inductively construct elements Cn ∈ H̃4+4σ
G (PH(Wn)+)(•), each such that

(q0
n)
∗(Cn) = (B0

n)
∗(x0(ε

4 + ξ2x0)),

(q1
n)
∗(Cn) = (B1

n)
∗(x1(ε

4 + ξ2x1)),

ρn(Cn) = (Bn)
∗(x2).

Since theWn are a cofinal collection of finite-dimensional sub-H-modules of Q, and since

(Br
n)
∗ ◦ (qr )∗ = (qr

n)
∗ ◦ (Bn)

∗,
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by Theorem 5.2 this process yields an element C ∈ H̃4+4σ
C2
(PH(Q)+)(•) with

(q0)∗(C) = x0(ε
4 + ξ2x0),

(q1)∗(C) = x1(ε
4 + ξ2x1),

ρ(C) = x2

as desired.

First, Lemma 6.14 will provide a base case by constructing an element C3 with the specified

properties, then Theorem 6.15 will perform the main work of proving the inductive step, that an

element Cn can always be lifted to an element Cn+1.

Lemma 6.14. An element C3 ∈ H̃4+4σ
C2
(PH(W3)+) exists with the following properties:

(q0
3)
∗(C3) = (B

0
3)
∗(x0(ε

4 + ξ2x0)),

(q1
3)
∗(C3) = (B

1
3)
∗(x1(ε

4 + ξ2x1)),

ρ3(C3) = (B3)
∗(x2).

Proof. The proof may be broken into sections.

Define the element C3

First, note that Sw2 = S4+4σ.

Let C3 ∈ H̃4+4σ
C2
(PH(W3)+)(•) be the image of 1 ∈ A(•) � H̃4+4σ

C2
(S4+4σ)(•) under (π2)

∗.
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Check the value of q0
3(C3)

We have that Z0
2 = S |W2(0;C)| = S4, so within Figure 6.2 we find the commutative square of Mackey

functors

H̃4+4σ
C2
(S4+4σ) H̃4+4σ

C2
(PH(W3)+)

H̃4+4σ
C2
(S4) H̃4+4σ

C2
(P0
H
(W3)+)

(χ0
2 )
∗

(π2)
∗

(q0
3)
∗

(π0
2)
∗

In non-equivariant cohomology, the map (π0
2)
∗ : H̃4(S4) → H̃4(HP1

+) sends the generator 1 to the

generator (B0
3)
∗(x0), so by Remark 6.9, we conclude that the map

(π0
2)
∗ : H̃4+4σ

C2
(S4) � H4σ

C2
(S0) ⊗ H̃4(S4) → H4σ

C2
(S0) ⊗ H̃4(HP1

+) ⊆ H̃4+4σ
C2
(HP1
+)

sends the generator ε4 ∈ H̃4+4σ
C2
(S4) � 〈Z〉(•) to the element (B0

3)
∗(ε4x0) ∈ H̃4+4σ

C2
(P0
H
(W3)+)(•).

The map (χ0
2 )
∗ sends 1 ∈ H̃4+4σ

C2
(S4+4σ) to ε4 ∈ H̃4+4σ

C2
(S4), because the composition

H̃0
C2
(S0) � H̃4+4σ

C2
(S4+4σ)

(χ0
2 )
∗

−−−−→ H̃4+4σ
C2
(S4) � H̃4σ

C2
(S0)

is the same as the map in cohomology induced by ε4 : S0 → S4σ (see Definition 2.44).

Thus, we have that (q0
3)
∗(C3) = (B0

3)
∗(ε4x0).

Note that (B0
3)
∗(x0(ε

4 + ξ2x0)) = (B0
3)
∗(ε4x0) by Remark 6.9, since P0

H
(W3)+ � HP1

+.
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Check the value of q1
3(C3)

We have that Z1
2 = pt, so within Figure 6.2 we find the commutative square of Mackey functors

H̃4+4σ
C2
(S4+4σ) H̃4+4σ

C2
(PH(W3)+)

H̃4+4σ
C2
(pt) H̃4+4σ

C2
(P1
H
(W3)+)

(χ1
2 )
∗

(π2)
∗

(q3
1)
∗

(π1
2)
∗

Since H̃4+4σ
C2
(pt) = 0, we have that (q1

3)
∗(C3) = 0.

Note that (B1
3)
∗(x1(ε

4 + ξ2x1)) = 0 by Remark 6.9, since P1
H
(W3)+ � HP0

+ � S0.

Check the value of ρ3(C3)

Within Figure 6.2 we find the maps (π2)
∗ and (B3)

∗, which we expand into their • and ☼ levels.

H̃4+4σ
C2
(PH(Q)+)(•)

H̃4+4σ
C2
(PH(Q)+)(☼)

H̃4+4σ
C2
(S4+4σ)(•) H̃4+4σ

C2
(PH(W3)+)(•)

H̃4+4σ
C2
(S4+4σ)(☼) H̃4+4σ

C2
(PH(W3)+)(☼)

ρ

(B3)
∗

ρ̂2 ρ3(π2)
∗
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Non-equivariantly, we have

PH(Q)+ � HP∞+ , PH(W3)+ � HP2
+, S4+4σ � S8

and π2 is just the map HP2
+ → S8 that collapses the 4-cell of HP2

+ and glues the disjoint basepoint

somewhere. By Remark 2.56, the☼ level of this diagram just reflects what happens in non-equivariant

cohomology:

H̃8(HP∞)

H̃8(S8) H̃8(HP2
+)

(B3)
∗

(π2)
∗

namely, that (π2)
∗ sends the generator 1 ∈ H̃8(S8) to the generator (B3)

∗(x2) ∈ H̃8(HP2
+).

Because H̃4+4σ
C2
(S4+4σ) � H̃0

C2
(S0) � A, we see that ρ̂2 sends the element 1 ∈ H̃4+4σ

C2
(S4+4σ)(•)

to the element 1 ∈ H̃4+4σ
C2
(S4+4σ)(☼) � H̃8(S8) (see Definition 2.38), so that

ρ3(C3) = ρ3((π2)
∗(1)) = (π2)

∗(ρ̂2)(1) = (B3)
∗(x2). �

Now we prove the inductive step, that an element Cn with the desired properties can always be lifted

to an element Cn+1 with the desired properties.

Theorem 6.15. If Cn ∈ H̃4+4σ
C2
(PH(Wn)+) exists, then Cn+1 ∈ H̃4+4σ

C2
(PH(Wn+1)+) exists.

Proof. Suppose that a class Cn ∈ H̃4+4σ
C2
(PH(Wn)+)(•) has been defined with

(q0
n)
∗(Cn) = (B0

n)
∗(x0(ε

4 + ξ2x0))

(q1
n)
∗(Cn) = (B1

n)
∗(x1(ε

4 + ξ2x1))
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ρn(Cn) = (Bn)
∗(x2)

for some n ≥ 3.

Existence and uniqueness of an element Cn+1

We will lift the class Cn ∈ H̃4+4σ
C2
(PH(Wn)+)(•) along the map (bn)

∗, which fits into an exact

sequence

0 H̃4+4σ
C2
(Swn)(•) H̃4+4σ

C2
(PH(Wn+1)+)(•) H̃4+4σ

C2
(PH(Wn)+)(•) 0

(πn)
∗ (bn)∗

Note that

H4+4σ
C2
(Swn)(•) � H4+4σ−wn

C2
(S0)(•).

If n ≥ 4, we have |wn | ≥ 16 and |wC2
n | ≥ 8, and therefore

|4 + 4σ −wn | ≤ 8 − 16 = −8, |(4 + 4σ −wn)
C2 | ≤ 4 − 8 = −4

so that by considering Figure 2.1, H̃4+4σ
C2
(Swn) � H̃4+4σ−wn

C2
(S0) = 0. Thus (bn)

∗ is an isomorphism

in dimension 4 + 4σ, hence there is exactly one lift of Cn along the map (bn)
∗, which we will define

to be our element Cn+1.

However, if n = 3, then we have w3 = 4 + 8σ, so that |w3 | = 12 and |wC2
3 | = 4, and therefore

|4 + 4σ −w3 | = 8 − 12 = −4, |(4 + 4σ −w3)
C2 | = 4 − 4 = 0

so that by considering Figure 2.1, H̃4+4σ
C2
(Sw3) � H̃−4σ

C2
(S0) = 〈Z〉, and there are infinitely many

lifts of C3 along (b3)
∗. We will show that exactly one of these lifts has the desired value under (q1

4)
∗,

and this will be our choice of C4.
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Note that – equivariantly, since these spaces have a trivial C2-action – we have

Z1
3 � S4, P1

H(W4)+ � HP1
+, P1

H(W3)+ � HP0
+

and consider this section of Figure 6.2.

0 H̃4+4σ
C2
(Sw3) H̃4+4σ

C2
(PH(W4)+) H̃4+4σ

C2
(PH(W3)+) 0

0 H̃4+4σ
C2
(S4) H̃4+4σ

C2
(P1
H
(W4)+) H̃4+4σ

C2
(P1
H
(W3)+) 0

(χ1
3 )
∗

(π3)
∗ (b3)

∗

(q1
4)
∗ (q1

3)
∗

(π1
3)
∗ (b1

3)
∗

As we showed in the proof of Lemma 6.14, we have (q1
3)
∗(C3) = 0. By the exactness of the bottom

row, this means that for any lift Ĉ3 of C3 along the map (b3)
∗, we must have that (q1

4)
∗(Ĉ3) is in the

image of (π1
3)
∗.

In non-equivariant cohomology, the map (π1
3)
∗ : H̃4(S4) → H̃4(HP1

+) sends the generator 1 to the

generator (B1
4)
∗(x1), so by Remark 6.9, we conclude that the map

(π1
3)
∗ : H̃4+4σ

C2
(S4) � H4σ

C2
(S0) ⊗ H̃4(S4) → H4σ

C2
(S0) ⊗ H̃4(HP1

+) ⊆ H̃4+4σ
C2
(HP1
+)

sends the generator ε4 ∈ H̃4+4σ
C2
(S4)(•) � 〈Z〉(•) to (B1

4)
∗(ε4x1) ∈ H̃4+4σ

C2
(P1
H
(W4)+)(•). Since

(χ1
3 )
∗ is an isomorphism from

H̃4+4σ
C2
(S4+8σ) � H̃−4σ

C2
(S0) � 〈Z〉

to

H̃4σ
C2
(S0) � H̃4+4σ

C2
(S4) � 〈Z〉

(see the footnote at [Shu10, p.36]), each element in the image of (π1
3)
∗ occurs as the image under

(q1
4)
∗ of some lift of C3 . In particular, we can choose C4 ∈ H̃4+4σ

C2
(PH(W4)+)(•) with (q1

4)
∗(C4) =
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(B1
4)
∗(ε4x1), which equals the desired value of (B1

4)
∗(x1(ε

4 + ξ2x1)) because P1
H
(W4)+ � HP1

+.

Check the value of ρn+1(Cn+1)

For clarity, we expand the maps (bn)
∗, (Bn)

∗, and (Bn+1)
∗ into their • and ☼ levels.

H̃4+4σ
C2
(PH(Q)+)(•)

H̃4+4σ
C2
(PH(Q)+)(☼)

H̃4+4σ
C2
(PH(Wn+1)+)(•) H̃4+4σ

C2
(PH(Wn)(•)

H̃4+4σ
C2
(PH(Wn+1)+)(☼) H̃4+4σ

C2
(PH(Wn)(☼)

ρ

(Bn+1)
∗

(Bn)
∗

ρn+1 ρn(bn)∗

Non-equivariantly, we have

PH(Q)+ � HP∞+ , PH(Wn+1)+ � HPn
+, PH(Wn)+ � HPn−1

+

and bn is just the inclusion map HPn−1
+ → HPn

+ that adds a 4n-cell to HPn−1
+ . By Remark 2.56, the

☼ level of this diagram just reflects what happens in non-equivariant cohomology:

H̃8(HP∞+ )

H̃8(HPn
+) H̃8(HPn−1

+ )

(Bn+1)
∗

(Bn)
∗

(bn)∗
�
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namely, that the map (bn)
∗ is an isomorphism in dimension 8, and sends the generator (Bn+1)

∗(x2) ∈

H̃8(HPn
+) to the generator (Bn)

∗(x2) ∈ H̃8(HPn−1
+ ).

By the induction hypothesis we know that ρn(Cn) = (Bn)
∗(x2), and because Cn+1 is a lift of Cn

along (bn)
∗, we can conclude ρn+1(Cn+1) = (Bn+1)

∗(x2), as desired.

Check the value of (qr
n+1)

∗(Cn+1) for n . r mod 2

Since n . r mod 2, we have that Zr
n = pt, so that H̃4+4σ

C2
(Zr

n) = 0, and hence (br
n)
∗ is an isomorphism

in dimension 4 + 4σ. Now the relevant piece of Figure 6.2 is

H̃4+4σ
C2
(PH(Wn+1)+) H̃4+4σ

C2
(PH(Wn)+)

H̃4+4σ
C2
(Pr
H
(Wn+1)+) H̃4+4σ

C2
(Pr
H
(Wn)+)

H̃4+4σ
C2
(Pr
H
(Q)+)

(bn)∗

(qr
n+1)

∗
(qrn)

∗

(brn)
∗

�

(Br
n+1)

∗

(Br
n)
∗

By our inductive hypothesis, we know that (qr
n)
∗(Cn) = (Br

n)
∗(xr (ε

4 + ξ2xr )), so we can conclude

(br
n)
∗ ◦ (qr

n+1)
∗(Cn+1) = (q

r
n)
∗ ◦ (bn)

∗(Cn+1)

(br
n)
∗ ◦ (qr

n+1)
∗(Cn+1) = (q

r
n)
∗(Cn)

(br
n)
∗ ◦ (qr

n+1)
∗(Cn+1) = (B

r
n)
∗(xr (ε

4 + ξ2xr ))

(qr
n+1)

∗(Cn+1) = ((b
r
n)
∗)−1 ◦ (Br

n)
∗(xr (ε

4 + ξ2xr ))

(qr
n+1)

∗(Cn+1) = (B
r
n+1)

∗(xr (ε
4 + ξ2xr ))

which is what is desired.
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Check the value of (qr
n+1)

∗(Cn+1) for n ≡ r mod 2

We started with the assumption that n ≥ 3, and we have already chosen our element C4 such that

(q1
4)
∗(C4) is the desired value. Therefore in this section we can assume n ≥ 4.

Since n ≡ r mod 2, we have that Zr
n = S |Wn(r;C)| = S4bn/2c by Section 6.2. Note that because n ≥ 4,

we have that 4bn/2c ≥ 8.

We now consider this section of Figure 6.2.

0 H̃4+4σ
C2
(S4bn/2c) H̃4+4σ

C2
(Pr
H
(Wn+1)+) H̃4+4σ

C2
(Pr
H
(Wn)+) 0

H̃4+4σ
C2
(Pr
H
(Q)+)

(πrn)
∗ (brn)

∗

(Br
n+1)

∗

(Br
n)
∗

If in fact 4b n2c > 8, then it must be at least 12, hence

��4 + 4σ − 4b n2c
�� ≤ 8 − 12 = −4,

��(4 + 4σ − 4b n2c)
G�� ≤ 4 − 12 = −8.

By considering Figure 2.1, we see that

H̃4+4σ
C2
(S4bn/2c) � H̃4+4σ−4bn/2c

C2
(S0) = 0,

so that (br
n)
∗ is an isomorphism, which implies that (qr

n+1)
∗(Cn+1) is the desired value of

(Br
n+1)

∗(xr (ε
4 + ξ2x2

r )) by the same argument as in the previous section.

If instead 4b n2c = 8, then it must be the case that n = 4 or 5, so that – equivariantly, since these

spaces have a trivial C2-action – we have

Zr
n � S8, Pr

H(Wn+1)+ � HP2
+, Pr

H(Wn)+ � HP1
+
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and hence our diagram is

0 H̃4+4σ
C2
(S8) H̃4+4σ

C2
(HP2
+) H̃4+4σ

C2
(HP1
+) 0

H̃4+4σ
C2
(HP∞+ )

(πrn)
∗ (brn)

∗

(Br
n+1)

∗

(Br
n)
∗

Note that |4 + 4σ − 8| = 0 and |(4 + 4σ − 8)C2 | = −4, so by observing Figure 2.1, we see that

H̃4+4σ
C2
(S8) � H̃4+4σ−8

C2
(S0) � R.

By Definition 2.46, we see that ξ2 is the generator of R(•) � Z. In non-equivariant cohomology,

the map (πr
n)
∗ : H̃8(S8) → H̃8(HP2

+) sends the generator 1 to the generator (Br
n+1)

∗(x2
r ), so by

Remark 6.9, we conclude that the map

(πr
n)
∗ : H̃4+4σ

C2
(S8) � H̃4+4σ−8

C2
(S0) ⊗ H̃8(S8) → H̃4+4σ−8

C2
(S0) ⊗ H̃8(HP2

+) ⊆ H̃4+4σ
C2
(HP2
+)

sends the generator ξ2 ∈ H̃4+4σ
C2
(S8)(•) � R(•) to the element (Br

n+1)
∗(ξ2x2

r ) ∈ H̃4+4σ
C2
(HP2
+)(•).

By our induction hypothesis,

((br
n)
∗ ◦ (qr

n+1)
∗)(Cn+1) = (q

r
n)
∗(Cn) = (Br

n)
∗(xr (ε

4 + ξ2xr ))

and therefore (qr
n+1)

∗(Cn+1) is a lift of (Br
n)
∗(xr (ε

4 + ξ2xr )) along the map (br
n)
∗. Of course, the lift

we would like it to be is precisely (Br
n+1)

∗(xr (ε
4 + ξ2xr )).

Because Pr
H
(Wn)+ � HP1

+, we have that (Br
n)
∗(x2

r ) = 0 by Remark 6.9. Thus

(Br
n)
∗(xr (ε

4 + ξ2xr )) = ε
4xr,
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and therefore, a priori, the value of a lift of (Br
n)
∗(xr (ε

4 + ξ2xr )) along the map (br
n)
∗ could be

(Br
n+1)

∗(xr (ε
4 + kξ2xr )) for any k ∈ Z, since the image of (πr

n)
∗ is the kernel of (br

n)
∗.

Consider the map (qr
n+1)

∗ in Figure 6.2, expanded into its • and ☼ components.

H̃4+4σ
C2
(PH(Wn+1)+)(•)

H̃4+4σ
C2
(PH(Wn+1)+)(☼)

H̃4+4σ
C2
(Pr
H
(Wn+1)+)(•)

H̃4+4σ
C2
(Pr
H
(Wn+1)+)(☼)

ρn+1

(qr
n+1)

∗

ρr
n+1

Again by Remark 2.56, the ☼ level of this diagram just reflects what happens in non-equivariant

cohomology:

H̃8(HPn
+)

H̃8(HP2
+)

(qr
n+1)

∗

namely, that themap (qr
n+1)

∗ is an isomorphism in dimension 8, and sends the generator (Bn+1)
∗(x2) ∈

H̃8(HPn
+) � Z to the generator (ρr

n+1)
∗((Br

n+1)
∗(ξ2x2

r )) ∈ H̃8(HP2
+) � Z.

However, we have already established that (ρn+1)
∗(Cn+1) = (Bn+1)

∗(x2), and therefore

(ρr
n+1)

∗((qr
n+1)

∗(Cn+1)) = (q
r
n+1)

∗((ρn+1)
∗(Cn+1))

81



= (qr
n+1)

∗((Bn+1)
∗(x2))

= (ρr
n+1)

∗((Br
n+1)

∗(ξ2x2
r ))

Because ρr
n+1 is an isomorphism (see the definition of R in Definition 2.38), the value of

(qr
n+1)

∗(Cn+1), which we showed must be (Br
n+1)

∗(xr (ε
4 + kξ2x2

r )) for some k ∈ Z, must in

fact be

(Br
n+1)

∗(xr (ε
4 + ξ2x2

r )),

as desired. �

6.6 Proof that c and C generate H̃∗C2
(BC2SU(2)+; A)

The elements cn and Cn constructed in Section 6.4 and Section 6.5 may seem to only be tools used

to obtain the desired elements c and C. However, in proving that c and C generate H̃∗C2
(PH(Q)+; A),

the elements cn and Cn will remain important for us because they generate H̃∗C2
(PH(Wn)+; A), i.e.,

the cohomology of the nth piece of the filtration of PH(Q).

We will first establish this in Lemma 6.16, which comprises the main part of the work, and which

again uses an inductive argument based on checking images under ρn, (q0
n)
∗, and (q1

n)
∗. Then in

Theorem 6.17, we use this to conclude that c and C generate H̃∗C2
(PH(Q)+; A), thereby proving the

first half of our main Theorem 6.11. The key observation in this latter step is that cn and Cn are the

images of c and C, respectively, in H̃∗C2
(PH(Wn)+; A).

Lemma 6.16. For any n ≥ 1, the elements (Bn)
∗(c) = cn and (Bn)

∗(C) = Cn together generate

H̃∗C2
(PH(Wn)+; A) as an H̃∗C2

(S0; A)-algebra.

Proof. This is obvious for n = 1 since PH(W1)+ � S0, so assume the result for n.
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From Figure 6.2, we have a split short exact sequence

0→ H̃∗C2
(Swn)

(πn)
∗

−−−−−−−→ H̃∗C2
(PH(Wn+1)+)

(bn)∗
−−−−→ H̃∗C2

(PH(Wn)+) → 0

and let ν = (πn)
∗(1) be the image of 1 ∈ H̃wn

C2
(Swn)(•) � H̃0

C2
(S0)(•) � A(•) under the map (πn)

∗.

Because the elements

(bn)
∗((Bn+1)

∗(c)) = (Bn)
∗(c), (bn)

∗((Bn+1)
∗(C)) = (Bn)

∗(C)

already generate H̃∗C2
(PH(Wn)+) by hypothesis, we only have to check that (Bn+1)

∗(c) and (Bn+1)
∗(C)

generate ν. To demonstrate this, we claim in particular that

ν =


(Bn+1)

∗(Cn/2) if n is even,

(Bn+1)
∗(cC(n−1)/2) if n is odd.

It suffices to check this under the maps ρn+1, (q0
n+1)

∗, and (q1
n+1)

∗.

Compute the desired value of ρn+1(ν)

First, note that in H̃∗C2
(PH(Q)+)(☼)

ρ(Ck ) = x2k, ρ(cCk ) = x2k+1,

so that in H̃∗C2
(PH(Wn+1)+)(☼), we have

ρn+1((Bn+1)
∗(Ck )) = (Bn+1)

∗(x2k ), ρn+1((Bn+1)
∗(cCk )) = (Bn+1)

∗(x2k+1).
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Therefore, in particular, we have for even n that

ρn+1((Bn+1)
∗(Cn/2)) = (Bn+1)

∗(xn)

and for odd n that

ρn+1((Bn+1)
∗(cC(n−1)/2)) = (Bn+1)

∗(xn).

Thus, regardless of the parity of n, we must show that ρn+1(ν) = (Bn+1)
∗(xn).

Compute the desired value of (q0
n+1)

∗(ν)

In H̃∗C2
(P0
H
(Q)+)(•), we have for any k that

(q0)∗(Ck ) = (x0(ε
4 + ξ2x0))

k

= xk
0

k∑
s=0

(
k
s

)
(ε4)k−s(ξ2x0)

s

= ε4k xk
0 +

(
k
1

)
ε4k−4ξ2xk+1

0 + · · ·

and therefore

(q0)∗(cCk ) = (ξ2x0)(q
0)∗(Ck )

= ε4kξ2xk+1
0 +

(
k
1

)
ε4k−4ξ4xk+2

0 + · · ·

BecauseWm = Ψ
dm/2e
0 ⊕ Ψ

bm/2c
1 , we have that

P0
H(Wm)+ = PH(Wm(0;H))+ � HPdm/2e−1

+ .
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By Remark 6.9, this implies that (B0
m)
∗(xd

0 ) = 0 when d ≥ dm/2e. Therefore, for even n, we have

(B0
n+1)

∗(xd
0 ) = 0 when d ≥ (n/2) + 1, and for odd n, we have (B0

n+1)
∗(xd

0 ) = 0 when d ≥ (n + 1)/2.

Now we can see that for even n,

(q0
n+1)

∗((Bn+1)
∗(Cn/2)) = (B0

n+1)
∗((q0)∗(Cn/2))

= (B0
n+1)

∗

(
ε2nxn/2

0 +

(
n/2
1

)
ε2n−4ξ2x(n/2)+1

0 + · · ·

)
= (B0

n+1)
∗(ε2nxn/2

0 )

and for odd n,

(q0
n+1)

∗((Bn+1)
∗(cC(n−1)/2)) = (B0

n+1)
∗((q0)∗(cC(n−1)/2))

= (B0
n+1)

∗

(
ε2n−2ξ2x(n+1)/2

0 +

(
(n − 1)/2

1

)
ε2n−6ξ4x(n+3)/2

0 + · · ·

)
= 0.

Thus, we must show that

(q0
n+1)

∗(ν) =


(B0

n+1)
∗(ε2nxn/2

0 ) if n is even,

0 if n is odd.

Compute the desired value of (q1
n+1)

∗(ν)

In H̃∗C2
(P1
H
(Q)+)(•), we have for any k that

(q1)∗(Ck ) = (x1(ε
4 + ξ2x1))

k

= xk
1

k∑
s=0

(
k
s

)
(ε4)k−s(ξ2x1)

s
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= ε4k xk
1 +

(
k
1

)
ε4k−4ξ2xk+1

1 + · · ·

and therefore

(q1)∗(cCk ) = (ε4 + ξ2x1)(q
1)∗(Ck )

= ε4k+4xk
1 +

(
k + 1

1

)
ε4kξ2xk+1

1 + · · ·

BecauseWm = Ψ
dm/2e
0 ⊕ Ψ

bm/2c
1 , we have that

P1
H(Wm)+ = PH(Wm(1;H))+ � HPbm/2c−1

+ .

By Remark 6.9, this implies that (B1
m)
∗(xd

1 ) = 0 when d ≥ bm/2c. Therefore, for even n, we have

(B1
n+1)

∗(xd
1 ) = 0 when d ≥ n/2, and for odd n, we have (B1

n+1)
∗(xd

0 ) = 0 when d ≥ (n + 1)/2. Now

we can see that for even n,

(q1
n+1)

∗((Bn+1)
∗(Cn/2)) = (B1

n+1)
∗((q1)∗(Cn/2))

= (B1
n+1)

∗

(
ε2nxn/2

1 +

(
n/2
1

)
ε2n−4ξ2x(n/2)+1

1 + · · ·

)
= 0

and for odd n,

(q1
n+1)

∗((Bn+1)
∗(cC(n−1)/2)) = (B1

n+1)
∗((q1)∗(cC(n−1)/2))

= (B1
n+1)

∗

(
ε2n+2x(n−1)/2

1 +

(
(n + 1)/2

1

)
ε2n−2ξ2x(n+1)/2

1 + · · ·

)
= (B1

n+1)
∗(ε2n+2x(n−1)/2

1 ).
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Thus, we will want to show that

(q1
n+1)

∗(ν) =


0 if n is even,

(B1
n+1)

∗(ε2n+2x(n−1)/2
1 ) if n is odd.

Check that ρn+1(ν) equals the desired value

Within Figure 6.2 we find the maps (πn)
∗ and (Bn+1)

∗, which we expand into their • and ☼ levels.

H̃wn
C2
(PH(Q)+)(•)

H̃wn
C2
(PH(Q)+)(☼)

H̃wn
C2
(Swn)(•) H̃wn

C2
(PH(Wn+1)+)(•)

H̃wn
C2
(Swn)(☼) H̃wn

C2
(PH(Wn+1)+)(☼)

ρ

(Bn+1)
∗

ρ̂n ρn+1(πn)
∗

Non-equivariantly, we have

PH(Q)+ � HP∞+ , PH(Wn+1)+ � HPn
+, Swn � S4n

and πn is just the map HPn
+ → S4n that collapses the 4k-cells of HPn

+ for k < n, and glues the

disjoint basepoint somewhere. By Remark 2.56, the ☼ level of this diagram just reflects what

happens in non-equivariant cohomology:
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H̃4n(HP∞)

H̃4n(S4n) H̃4n(HPn
+)

(Bn+1)
∗

(πn)
∗

namely, that (πn)
∗ sends the generator 1 ∈ H̃4n(S4n) to the generator (Bn+1)

∗(xn) ∈ H̃4n(HPn
+).

Because H̃wn
C2
(Swn) � H̃0

C2
(S0) � A, we can see that ρ̂n sends the element 1 ∈ H̃wn

C2
(Swn)(•) to the

element 1 ∈ H̃wn
C2
(Swn)(☼) � H̃4n(S4n) (see Definition 2.38), so that

ρn+1(ν) = ρn+1((πn)
∗(1)) = (πn)

∗(ρ̂n)(1) = (Bn+1)
∗(xn).

Check that (q0
n+1)

∗(ν) and (q1
n+1)

∗(ν) equal the desired values for even n

When n is even, we have that

Wn+1 = Ψ
(n/2)+1
0 ⊕ Ψ

n/2
1 , P0

H(Wn+1) � HPn/2 P1
H(Wn+1) � HP(n/2)−1

Swn = S2n+2nσ, Z0
n = S2n, Z1

n = pt

Therefore, in Figure 6.2, we have the following two diagrams (the top for r = 0, the bottom for

r = 1):

H̃2n+2nσ
C2

(S2n+2nσ) H̃2n+2nσ
C2

(PH(Wn+1)+)

H̃2n+2nσ
C2

(S2n) H̃2n+2nσ
C2

(HPn/2
+ )

(χ0
n)
∗

(πn)
∗

(q0
n+1)

∗

(π0
n)
∗
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H̃2n+2nσ
C2

(S2n+2nσ) H̃2n+2nσ
C2

(PH(Wn+1)+)

H̃2n+2nσ
C2

(pt) H̃2n+2nσ
C2

(HP(n/2)−1
+ )

(χ1
n)
∗

(πn)
∗

(q1
n+1)

∗

(π1
n)
∗

For the r = 1 case, note that since H̃2n+2nσ
C2

(pt) = 0, we have that (q1
n+1)

∗(ν) = 0.

For the r = 0 case, note that in non-equivariant cohomology, the map (π0
n)
∗ : H̃2n(S2n) →

H̃2n(HPn/2
+ ) sends the generator 1 to the generator (B0

n+1)
∗(xn/2

0 ), so by Remark 6.9, we conclude

that the map

(π0
n)
∗ : H̃2n+2nσ

C2
(S2n) � H2nσ

C2
(S0) ⊗ H̃2n(S2n) → H2nσ

C2
(S0) ⊗ H̃2n(HPn/2

+ ) ⊆ H̃2n+2nσ
C2

(HPn/2
+ )

sends the generator ε2n ∈ H̃2n+2nσ
C2

(S2n)(•) � 〈Z〉(•) to the element

(B0
n+1)

∗(ε2nxn/2
0 ) ∈ H̃2n+2nσ

C2
(P0
H(Wn+1)+)(•).

The map (χ0
n )
∗ sends 1 ∈ H̃2n+2nσ

C2
(S2n+2nσ) to ε2n ∈ H̃2n+2nσ

C2
(S2n), because the composition

H̃0
C2
(S0) � H̃2n+2nσ

C2
(S2n+2nσ)

(χ0
n)
∗

−−−−→ H̃2n+2nσ
C2

(S2n) � H̃2nσ
C2
(S0)

is the same as the map in cohomology induced by ε2n : S0 → S2nσ (see Definition 2.44).

Thus, we have that (q0
n+1)

∗(ν) = (B0
n+1)

∗(ε2nxn/2
0 ).

89



Check that (q0
n+1)

∗(ν) and (q1
n+1)

∗(ν) equal the desired values for odd n

When n is odd, we have that

Wn+1 = Ψ
(n+1)/2
0 ⊕ Ψ

(n+1)/2
1 , P0

H(Wn+1) � HP(n−1)/2 P1
H(Wn+1) � HP(n−1)/2

Swn = S(2n−2)+(2n+2)σ, Z0
n = pt, Z1

n = S2n−2

Therefore, in Figure 6.2, we have the following two diagrams (the top for r = 0, the bottom for

r = 1):

H̃(2n−2)+(2n+2)σ
C2

(S(2n−2)+(2n+2)σ) H̃(2n−2)+(2n+2)σ
C2

(PH(Wn+1)+)

H̃(2n−2)+(2n+2)σ
C2

(pt) H̃(2n−2)+(2n+2)σ
C2

(HP(n−1)/2
+ )

(χ0
n)
∗

(πn)
∗

(q0
n+1)

∗

(π0
n)
∗

H̃(2n−2)+(2n+2)σ
C2

(S(2n−2)+(2n+2)σ) H̃(2n−2)+(2n+2)σ
C2

(PH(Wn+1)+)

H̃(2n−2)+(2n+2)σ
C2

(S2n−2) H̃(2n−2)+(2n+2)σ
C2

(HP(n−1)/2
+ )

(χ1
n)
∗

(πn)
∗

(q1
n+1)

∗

(π1
n)
∗

For the r = 0 case, note that since H̃(2n−2)+(2n+2)σ
C2

(pt) = 0, we have that (q0
n+1)

∗(ν) = 0.

For the r = 1 case, note that in non-equivariant cohomology, the map (π1
n)
∗ : H̃2n−2(S2n−2) →

H̃2n−2(HP(n−1)/2
+ ) sends the generator 1 to the generator (B1

n+1)
∗(x(n−1)/2

1 ), so by Remark 6.9, we

conclude that the map

(π1
n)
∗ : H̃(2n−2)+(2n+2)σ

C2
(S2n−2) � H(2n+2)σ

C2
(S0) ⊗ H̃2n−2(S2n−2) →
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H(2n+2)σ
C2

(S0) ⊗ H̃2n−2(HP(n−1)/2
+ ) ⊆ H̃(2n−2)+(2n+2)σ

C2
(HP(n−1)/2

+ )

sends the generator ε2n+2 ∈ H̃(2n−2)+(2n+2)σ
C2

(S2n−2)(•) � 〈Z〉(•) to the element

(B1
n+1)

∗(ε2n+2x(n−1)/2
1 ) ∈ H̃(2n−2)+(2n+2)σ

C2
(P1
H(Wn+1)+)(•).

The map (χ1
n )
∗ sends 1 ∈ H̃(2n−2)+(2n+2)σ

C2
(S(2n−2)+(2n+2)σ) to ε2n+2 ∈ H̃(2n−2)+(2n+2)σ

C2
(S2n−2),

because the composition

H̃0
C2
(S0) � H̃(2n−2)+(2n+2)σ

C2
(S(2n−2)+(2n+2)σ)

(χ1
n)
∗

−−−−→ H̃(2n−2)+(2n+2)σ
C2

(S2n−2) � H̃(2n+2)σ
C2

(S0)

is the same as the map in cohomology induced by ε2n+2 : S0 → S(2n+2)σ (see Definition 2.44).

Thus, we have that (q1
n+1)

∗(ν) = (B1
n+1)

∗(ε2n+2x(n+1)/2
1 ). �

Having established that the elements cn and Cn generate the cohomology of the nth piece of the

filtration, we are now in a position to prove the first part of Theorem 6.11.

Theorem 6.17. The elements c and C generate H̃∗C2
(BC2SU(2)+; A) as an H̃∗C2

(S0; A)-algebra.

Proof. We have already done the main work in Lemma 6.16, where we proved that (Bn)
∗(c) = cn

and (Bn)
∗(C) = Cn generate H̃∗C2

(PH(Wn)+) for every n ≥ 1. This implies that, if Y is the

sub-H̃∗C2
(S0)-algebra of H̃∗C2

(BC2SU(2)+) generated by c and C, then the composite map

Y ↪→ H̃∗C2
(BC2SU(2)+)

(Bn)
∗

−−−−→ H̃∗C2
(PH(Wn)+)

is surjective for every n.

By combining Theorem 2.52 and Theorem 4.18 (cf. Theorem 5.1), we see that as modules over
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H̃∗Cp
(S0; A), we have

H̃∗C2
(PH(Wn+1)+) � H̃∗C2

(PH(Wn)+) ⊕ Σ
wn H̃∗C2

(S0; A),

i.e., there is a single generator added in dimension wn. Therefore, the quotient map

(bn)
∗ : H̃∗C2

(PH(Wn+1)+) → H̃∗C2
(PH(Wn)+)

is an isomorphism outside of dimension wn, and in particular, it is an isomorphism in dimension α

whenever |α | < |wn | = 4n. Because Theorem 5.2 shows that the natural map

H̃∗C2
(BC2SU(2)+) → lim

←−−
H̃∗C2
(PH(Wn)+)

is an isomorphism, we conclude that the map (Bn)
∗ : H̃∗C2

(BC2SU(2)+) → H̃∗C2
(PH(Wn)+) is an

isomorphism in dimension α for all n ≥ |α |/4.

Because the composite map

Y ↪→ H̃∗C2
(BC2SU(2)+)

(Bn)
∗

−−−−→ H̃∗C2
(PH(Wn)+)

is surjective for every n, we conclude that for any α ∈ RO(C2), there is an n for which this composite

map is surjective:

Yα ↪→ H̃α
C2
(BC2SU(2)+)

(Bn)
∗

−−−−→
�

H̃α
C2
(PH(Wn)+)

Since it is also evidently injective, it must be an isomorphism, so that Yα is in fact equal to

H̃α
C2
(BC2SU(2)+), and thus Y = H̃∗C2

(BC2SU(2)+). �
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6.7 Relation between the generators c and C

Finally, in this section we establish the remainder of our main result Theorem 6.11, namely, the

relation between the generators c and C.

Theorem 6.18. The elements c and C satisfy the relation c2 = ε4c + ξ2C.

Proof. It suffices to check this under the maps ρ, (q0)∗, and (q1)∗. We have

ρ(c2) = ρ(c)2 ρ(ε4c + ξ2C) = 0 + ρ(ξ2C)

= x2 = x2

and

(q0)∗(c2) = (q0)∗(c)2 (q0)∗(ε4c + ξ2C) = ε4ξ2x0 + ξ
2x0(ε

4 + ξ2x0)

= (ξ2x0)
2 = 2ε4ξ2x0 + ξ

4x2
0

= ξ4x2
0 = ξ4x2

0

and

(q1)∗(c2) = (q1)∗(c)2 (q1)∗(ε4c + ξ2C) = ε4(ε4 + ξ2x1) + ξ
2x1(ε

4 + ξ2x1)

= (ε4 + ξ2x0)
2 = ε8 + 2ε4ξ2x1 + ξ

4x2
1

= ε8 + 2ε4ξ2x1 + ξ
4x2

1 = ε8 + ξ4x2
1

= ε8 + ξ4x2
1 �
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