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Lecture 1 July 2, 2012

The motivating example of a class number formula is
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This is sometimes called the Gregory series.

For |u| < 1,

1− u2 + u4 − u6 + · · · = 1
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Now integrate both sides:∫ 1
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The alternation of the signs is related to the Legendre symbol.

Let χ(n) = the nth term in the sequence 1, 0,−1, 0, 1, 0,−1, . . ., which is periodic with period 4.

Observations: χ(nm) = χ(n)χ(m). Also, χ(p) = (−1)
p−1
2 =

(
−1
p

)
for p an odd prime, where

( )
is the

Legendre symbol. χ is an example of a Dirichlet character.

Theorem. There are inVnitely many primes.

Proof (Euler-style). We can see that the harmonic series diverges by
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But notice that the harmonic series is equal to(
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by “FOIL”ing out the product and using unique factorization.

Each of the terms in this product is a geometric series, so the product is equal to
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The fact that this diverges implies that there exist inVnitely many primes (if there were Vnitely many, we would
just have a product of Vnitely many numbers, which of course exists).



Trick for avoiding divergent series:

ζ(s) = 1 +
1
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4s
+ · · ·

This is the Riemann zeta function. It converges when s > 1. Euler’s factorization looks like

ζ(s) =
1
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)−1
Graph:

Theorem. The limit lims→1 ζ(s)− 1
s−1 exists.

This theorem is saying that, even though lims→1 ζ(s) is inVnite (because it becomes the harmonic series), and
even though lims→1

1
s−1 is inVnite, their growth is so matched that the limit of their diUerence exists.
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Proof. Using “summation by parts”,
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where bxc is the Woor of x. Recall that for any x, we can break it into x = bxc+ 〈x〉, where 0 ≤ 〈x〉 < 1. Thus

s
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lim
s→1+

g(s) =

∫ ∞
1

〈x〉
x2

dx <

∫ ∞
1

1

x2
dx = 1



Therefore
lim
s→1+

ζ(s)− s

s− 1

exists, and s
s−1 = 1 + 1

s−1 .

Corollary 1. The series
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diverges.

Proof. Fact 1 (easily follows from our theorem):

lim
s→1+

ζ(s)(s− 1) = 1

Fact 2:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1
Taking the log of both sides of fact 2,

log(ζ(s)) =
∑
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(
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)−1
The Taylor series of log(1− x)−1 is

log(1− x)−1 = x+
x2

2
+
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3
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so

log(ζ(s)) =
∑
p prime

[
1

ps
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]
=
∑
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1
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where h(s) is “the trash”. I could prove for you that lims→1+ h(s) exists, but it’s really not that interesting. But
taking that as a given,

lim
s→1+

log(ζ(s)) =
∑
p prime

1

p
+ (limit of h(s))

but lims→1+ log(ζ(s)) doesn’t exist because lims→1+ ζ(s) doesn’t exist, so the only possibility is that
∑

p prime
1
p

doesn’t exist, i.e. the sum diverges.

Fact 1 lets us get something stronger:

lim
s→1+

 ∑
p prime

1

ps
− log

(
1

s− 1

) exists.

Theorem. There are inVnitely many primes of the form 4k + 1.

Proof. If p1, . . . , pn are all the primes of the form 4k + 1, let N = 4(p1 · · · pn)2 + 1. If p | N , then the fact that
there exists x such that x2 + 1 ≡ 0 mod p implies that p is of the form 4k + 1, but this can’t be one of the pi, so
this is a contradiction.



A similar proof works to show that there are inVnitely many primes of the form 4k + 3.

Let
L(s) = 1− 1

3s
+

1

5s
− 1

7s
+ · · ·

Then we know that lims→1+ L(s) = π
4 . The function L(s) also has an Euler factorization, because the function

χ is multiplicative:

L(s) =

∞∑
n=1

χ(n)

ns
=
∏

p prime

(
1− χ(p)

ps

)−1
Thus, as before,

log(L(s)) =
∑
p prime

log

(
1− χ(p)

ps

)−1
and again we can “throw away” all but the linear terms in the Taylor series.

log(L(s)) =
∑
p prime

χ(p)

ps
+ g1(s)

where lims→1+ g1(s) exists. Recall that

log(ζ(s)) =
∑
p prime

1

ps
+ g(s)

where lims→1+ g(s) exists. As s→ 1+, log(L(s)) converges, and log(ζ(s)) diverges. Thus,

this diverges −→ 1

2
(log(ζ(s)) + log(L(s))) =

∑
p prime

p≡1 mod 4

1

ps
+ (converges)

Thus, there are inVnitely many primes that are 1 mod 4, and what this tells us is that in fact∑
p prime

p≡1 mod 4

1

p

diverges. Taking log(L(s))− log(ζ(s)) instead of log(L(s)) + log(ζ(s)) gives us the same conclusion for primes
that are 3 mod 4.
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Last time, we talked about the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
,

which converges for s > 1, and which has a pole at s = 1. It has the (very important) Euler factorization

ζ(s) =
∏

p prime

(
1− 1

ps

)−1
which is a consequence of unique factorization in Z. We also know “how fast” the function ζ(s) blows up:

lim
s→1+

(
ζ(s)− 1

s− 1

)
exists.

We saw that this impies that
∑

p prime
1
p diverges.

Now, we’ll transport these facts to other number systems. The Vrst number system we see after Z is the Gaussian
integers, Z[i].

Facts about Z[i]:
Z[i] = {a+ bi | a, b ∈ Z}

Q[i] = {a+ bi | a, b ∈ Q}

The inverse of a+ bi ∈ Q(i) is given by

1

a+ bi
=

1

a+ bi
· a− bi
a− bi

=
a− bi
a2 + b2

Complex conjugation is deVned by a+ bi = a− bi, and it satisVes αβ = αβ.

Student(s): Why did you write Z[i] with square brackets and Q(i) with parentheses?

Z(i) not a good notation.

The norm of α = a+ bi is deVned to be N(α) = αα = a2 + b2.

The units of Z[i] are 1,−1, i,−i. We say that α and β are associates if α = βu where u is a unit. Recall that
α | β and β | α if and only if α and β are associates. Here are the associates of α = 3 + i:
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iΑ
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-iΑ

-4 -2 2 4

-4i

-2i

2i

4i

What are some of the primes of Z[i]?

Student(s): 1 + i

Right. The prime 1 + i is weird for a lot of reasons. One is that its conjugate is also an associate: we have

1 + i = 1− i = (−i)(1 + i).

Another class of primes of Z[i] are π = a + bi where N(π) = a2 + b2 = p ≡ 1 mod 4. Note that π and π are
not associates; for example, π = 2 + 3i and π = 2− 3i.

The Vnal class of primes of Z[i] are primes p of Z such that p ≡ 3 mod 4. Note that N(p) = p2.

(plot of primes in Z[i])

Let’s review the division algorithm in Z[i]. Given α, β ∈ Z[i], and β 6= 0, the number αβ need not be in Z[i], but
we can always Vnd some γ ∈ Z[i] such that √

N
(α
β
− γ
)
≤
√

2

2

N
(α
β
− γ
)
≤ 1

2

N(α− γβ︸ ︷︷ ︸
r

) ≤ 1

2
N(β) < N(β)

so we have α = γβ + r and N(r) < N(β).

Because we have the division algorithm in Z[i], we also get unique factorization in Z[i]. If α ∈ Z[i], α 6= 0 or a
unit, then α = π1 · · ·πt where the πi ∈ Z[i] are primes. This is unique up to reordering and associates.



Now back to the zeta function,

ζ(s) =

∞∑
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1

ns
.

We want to deVne a version for Q(i). We might try

ζQ(i)(s) =
∑
α∈Z[i]

1

N(α)s
,

but we have a few problems. We can’t deVne by 0, and we’re also overcounting. The right deVnition is

ζQ(i)(s) =
∑
α∈Z[i]
α 6=0

up to associates

1

N(α)s
=

1

4

∑
α 6=0

1

N(α)s
=

∑
(a,b)

a>0,b≥0

1

(a2 + b2)2

Let’s calculate the Vrst few terms:

ζQ(i)(s) =
1

1s
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+

0

3s
+
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+
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5s
+

0

6s
+

0

7s
+
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8s
+

1

9s
+ · · · =

∞∑
n=1

r(n)
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where r(n) = number of ways to write n = a2 + b2, where a, b ≥ 0. We have that

r(p) =


1 if p = 2,

0 if p ≡ 3 mod 4,

2 if p ≡ 1 mod 4.

This function ζQ(i)(s) is called the Dedekind zeta function for Q(i). It also has an Euler factorization, using the
same idea as the one for ζ(s), namely, unique factorization:

ζQ(i)(s) =
∏

π prime
up to associates

(
1 +

1

N(π)s
+

1

N(π)2s
+ · · ·

)
=

∏
π prime

up to associates

(
1− 1

N(π)s

)−1

The primes of Z[i] were split into three classes, so let’s do the same for our Euler factorization:

ζQ(i)(s) =

(
1− 1

2s

)−1 ∏
p prime

p≡1 mod 4

(
1− 1

ps

)−2 ∏
p prime

p≡3 mod 4

(
1− 1

p2s

)−1

We can factor the terms in the third part:

ζQ(i)(s) =

(
1− 1

2s

)−1 ∏
p prime

p≡1 mod 4

(
1− 1

ps

)−2 ∏
p prime

p≡3 mod 4

(
1− 1

ps

)−1(
1 +

1

ps

)−1

= ζ(s)
∏

p prime
p≡1 mod 4

(
1− 1

ps

)−1 ∏
p prime

p≡3 mod 4

(
1 +

1

ps

)−1

We can write this as

ζQ(i)(s) = ζ(s)
∏

p prime

(
1− χ(p)

ps

)−1



where χ(n) is the nth term in the sequence 0, 1, 0,−1, 0, 1, . . . and speciVcally χ(p) =
(
−1
p

)
. We deVne a new

function from this,

ζQ(i)(s) = ζ(s)L(s, χ) =
∞∑
n=1

1

ns

∞∑
n=1

χ(n)

ns
.

Note that for two sequences an and bn,(a1
1s

+
a2
2s

+
a3
3s

+ · · ·
)( b1

1s
+
b2
2s

+
b3
3s

+ · · ·
)

=
c1
1s

+
c2
2s

+
c3
3s

+ · · ·

where
cn =

∑
d|n

adbn/d.

Thus, we have that r(n) =
∑

d|n χ(d). Let’s do some examples:

r(17) = χ(1) + χ(17) = 1 + 1 = 2

r(7) = χ(1) + χ(7) = 1− 1 = 0

r(50) = χ(1) + χ(2) + χ(5) + χ(10) + χ(25) + χ(50) = 1 + 0 + 1 + 0 + 1 + 0 = 3
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Let’s compare

ζ(s) =
∞∑
n=1

1

ns
vs. ζQ(i)(s) =

∑
α∈Z[i]
α 6=0

up to units

1

N(α)s
.

Unique factorization: ∏
p prime

(
1− 1

ps

)−1
vs.

∏
π prime

up to units

(
1− 1

N(π)s

)−1

We have
ζQ(i)(s) = ζ(s)L(χ, s)

where

L(χ, s) = 1− 1

3s
+

1

5s
− · · · =

∞∑
n=1

χ(n)

ns

Also,

ζQ(i)(s) =

∞∑
n=1

r(n)

ns
, where r(n) = the number of ways to write n = a2 + b2 with a > 0, b ≥ 0.

We showed that this implied
r(n) =

∑
d|n

χ(d).

One can easily see that

r(n) = number of lattice points in the Vrst quadrant on the circle of radius
√
n centered at 0.

1 2 3

1

2

3



Just like we had

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · = 1

(
1− 1

2s

)
+ 2

(
1

2s
− 1

3s

)
+ 3

(
1

3s
− 1

4s

)
+ · · · = s

∫ ∞
1

bxc
xs+1

dx,

we see that

ζQ(i)(s) =
r(1)

1s
+
r(2)

2s
+
r(3)

3s
+ · · ·

= r(1)

(
1

1s
− 1

2s

)
+ (r(1)− r(2))

(
1

2s
− 1

3s

)
+ (r(1) + r(2) + r(3))

(
1

3s
− 1

4s

)
+ · · ·

Letting R(x) = r(1) + r(2) + · · ·+ r(bxc),

ζQ(i)(s) = R(1)

(
1

1s
− 1

2s

)
︸ ︷︷ ︸
s

∫ 2

1

1

xs+1
dx

+ R(2)

(
1

2s
− 1

3s

)
︸ ︷︷ ︸
s

∫ 3

2

1

xs+1
dx

+ · · ·

= s

∫ 2

1

R(x)

xs+1
dx+ s

∫ 3

2

R(x)

xs+1
dx+ · · · = s

∫ ∞
1

R(x)

xs+1
dx

For example, r(1) = 1, r(2) = 1, r(3) = 0, r(4) = 1, r(5) = 2. Here is a graph of R(x):

1 2 3 4 5
0

1

2

3

4

5

R(x) = r(1) + r(2) + · · ·+ r(bxc) = # of lattice points in the Vrst quadrant inside of (and including) the circle
of radius

√
x, excluding the origin (since we didn’t actually assign a value to r(0)).

Clearly, we should have

R(x) ≈ area of the quarter-circle =
π

4
x.

In the diagram demonstrating R(5) = 5, let’s put a box to the northwest of each lattice point inside the circle.
How much do I have to increase the radius to hit the next points, in the absolute worst-case scenario?

√
2.

Similarly, let’s underestimate in the worst-case scenario. We get that

area of quarter-circle of radius
√
x−
√

2 ≤ R(x) ≤ area of quarter-circle of radius
√
x+
√

2

π

4
(x− 2

√
2x+ 2) ≤ R(x) ≤ π

4
(x+ 2

√
2x+ 2)



π

4
(−2
√

2x+ 2) ≤ R(x)− π

4
x︸ ︷︷ ︸

ε(x)

≤ π

4
(2
√

2x+ 2)

Because R(x) = r(1) + · · ·+ r(bxc), we have that

R(x)

bxc
=
r(1) + r(2) + · · ·+ r(bxc)

bxc
= average number of ways a number ≤ x can be written as a2 + b2

We can conclude that

lim
n→∞

R(n)

n
=
π

4

Going back to the zeta function,

ζQ(i)(s) = s

∫ ∞
1

R(x)

xs+1
dx = s

∫ ∞
1

π/4

xs
dx+ s

∫ ∞
1

ε(x)

xs+1
dx

We’re interested in this as s → 1. This isn’t fully rigorous, but we want to say that the integral s
∫∞
1

ε(x)
x2

dx
converges, and to a continuous fucntion of s, so that at s = 1 we write

π

4

∫ ∞
1

−2
√

2x+ 2

x2
dx ≤

∫ ∞
1

ε(x)

x2
dx ≤ π

4

∫ ∞
1

2
√

2x+ 2

x2
dx

Thus
lim
s→1+

ζQ(i)(s)−
π

4

s

s− 1
converges,

and
lim
s→1+

ζQ(i)(s)(s− 1) =
π

4

π

4
= lim

s→1+
L(χ, s)ζ(s)(s− 1)

We proved in the Vrst lecture that lims→1+ ζ(s)(s− 1) = 1, so that

L(χ, 1) = 1− 1

3
+

1

5
− · · · = π

4
.

In the coming classes, we’ll do this process for other number systems, like Z[
√

5], Z[
√
−5], and Zp[x].
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Last time, we proved (in an incredibly roundabout way) that

1− 1

3
+

1

5
− 1

7
+ · · · = π

4

using the arithmetic of Z[i]. There were two phases: there was an algebraic phase, where we deVned the zeta
function

ζQ(i)(s) =
∑
α∈Z[i]
α 6=0

up to units

1

N(α)s

Because of unique prime factorization, there was an Euler product

ζQ(i)(s) =
∏

π prime
up to units

(
1− 1

N(π)s

)−1
= ζ(s)L(χ, s)

where
L(χ, s) = 1− 1

3s
+

1

5s
− 1

7s
+ · · ·

The analytic phase was computing that

lim
s→1+

ζQ(i)(s)(s− 1) =
π

4

Here, π4 arose as the average number of ways a natural number n can be written as n = a2 + b2 where a > 0,
b ≥ 0. We found that by showing the number of lattice points in

is approximately π
4x.

Now, we want to forge ahead and repeat this process for other number systems. You’ve previously studied

Z[
√
−2] = {a+ b

√
−2 | a, b ∈ Z}



The norm of a + b
√
−2 is deVned to be N(a + b

√
−2) = a2 + 2b2. The norm is multiplicative, i.e. N(αβ) =

N(α)N(β). Using that fact, it is easy to show that the units of Z[
√
−2] are just 1 and −1.

Does Z[
√
−2] have a division algorithm? Yes, because a point in the plane can only get

√
3
2 < 1 away from an

element of Z[
√
−2]:

1 2 3

-2

2 -2

3 -2

What are the primes of Z[
√
−2]? Just like for Z[i], there’s one weird one, and two inVnite classes.

• Weird prime:
√
−2

• π = a+ b
√
−2 where N(π) = a2 + 2b2 = p is a rational prime, p ≡ 1, 3 mod 8.

• Rational primes p for which p ≡ 5, 7 mod 8.

If p = a2 + 2b2 for p a prime, then
a2 + 2b2 ≡ 0 mod p

(ab−1)2 ≡ −2 mod p

and thus (
−2

p

)
=

(
−1

p

)(
2

p

)
= 1

By quadratic reciprocity, this is the case if and only if p ≡ 1, 3 mod 8. Conversely, if p ≡ 1, 3 mod 8, then(
−2
p

)
= 1, so that we can solve x2 ≡ −2 mod p, so that p | (x+

√
−2)(x−

√
2). But p doesn’t divide either factor,

so pmust not be prime in Z[
√
−2]. Say a non-trivial factorization of p is p = αβ; thenN(p) = p2 = N(α)N(β),

so we must be able to solve p = a2 + 2b2.

By unique prime factorization in Z[
√
−2], we therefore have that

ζQ(
√
−2)(s) =

∑
α∈Z[

√
−2]

α 6=0
up to ±1

1

N(α)s



=
∏

π prime
up to ±1

(
1− 1

N(π)s

)−1
=

(
1− 1

2s

)−1 ∏
p≡1,3 mod 8

(
1− 1

ps

)−1 ∏
p≡5,7 mod 8

(
1− 1

p2s

)−1

= ζ(s)
∏

p≡1,3 mod 8

(
1− 1

ps

)−1 ∏
p≡5,7 mod 8

(
1 +

1

ps

)−1

= ζ(s)

(
1 +

1

3s
+

1

9s
+ · · ·

)(
1− 1

5s
+

1

25s
− · · ·

)(
1− 1

7s
+

1

49s
− · · ·

)
= ζ(s)

(
1 +

1

3s
− 1

5s
− 1

7s
+

1

9s
+

1

11s
− 1

13s
− 1

15s
+

1

17s
+ · · ·

)
︸ ︷︷ ︸

L(χ, s) =
∞∑
n=1

χ(n)

ns

where χ(n) is the nth term in the sequence 1, 0, 1, 0,−1, 0,−1, 0, 1, 0, 1, 0, . . ., which has period 8.

The function χ is an example of what is known as a Dirichlet character. In this case, it is a function χ : Z8 →
{0, 1,−1} such that

χ(n) =


0 if n is even,

1 if n ≡ 1, 3 mod 8,

−1 if n ≡ 5, 7 mod 8.

Note that χ is multiplicative, i.e. χ(mn) = χ(m)χ(n), and that for an odd prime p, χ(p) =
(
−2
p

)
.

Now for the analytic phase. We note that

ζQ(
√
−2)(s) =

∑
α∈Z[

√
−2]

α 6=0
up to ±1

1

N(α)s
=

∞∑
n=1

r(n)

ns

where r(n) = the number of ways of writing n = a2 + 2b2, where (a, b) and (−a,−b) count as the same
solution. This is equal to

s

∫ ∞
1

R(x)

xs+1
dx

whereR(x) = r(1)+· · ·+r(bxc) is the number of pairs (a, b) (up to sign) where (a, b) 6= (0, 0) and a2+2b2 ≤ x.

Geometrically, it’s the number of unit lattice points within (and including) the ellipse with horizontal semimajor
axis
√
x and vertical semiminor axis

√
x/
√

2, together with the points on the positive x-axis.



R(x) = number of lattice points in the ellipse that lie in quadrant I or II ≈ 1
2 · π ·

√
x ·
√
x√
2

Taking limits,

1 +
1

3
− 1

5
− 1

7
+ · · · = L(χ, 1) = lim

s→1+
ζQ(
√
−2)(s)(s− 1) =

π

2
√

2
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We seen interesting examples of inVnite series dealing with the number systems Z[
√
−1] and Z[

√
−2]. Let’s

consider Z[
√
−3]:

1 2 3

-3

2 -3

Nnote that in one of these boxes, the distance from the center to a corner is exactly 1:

1

2
I1 + -3 M

1

-3

Thus, the division algorithn doesn’t hold in Z[
√
−3]. Now, it doesn’t necessarily follow that unique factorization

will also fail, but in this case, it does fail. Here’s an example:

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3)

This isn’t just a case of associates looking diUerent, because the only units in Z[
√
−3] are 1 and −1.

Since the centers of the rectangles seem to be causing this problem, why don’t we just add them in?



1 2 3

-3

2 -3

So, let’s consider
Z[ω] = Z[−1+

√
−3

2 ] = {a+b
√
−3

2 | a, b ∈ Z, a ≡ b mod 2}

where ω = −1+
√
−3

2 is a primitive cube root of unity.

1

Ω

Ω
2

-2 2

-2i

2i

Noet that ω2 = −ω − 1. Because we can express ω2 in terms of 1 and ω, any polynomial expression in ω with
integer coeXcients can be rewritten in the form a+ bω, where a, b ∈ Z. Thus

Z[ω] = {a+ bω | a, b ∈ Z}.



1

Ω +1Ω

Ω
2

-1

-Ω

-2 2

-2i

2i

(rhobmus, center of one triangle, max distance is 1√
3
< 1)

Thus, Z[ω] has division algorithm, and thus unique factorization. Our example is no longer a failure of unique
factorization, because

1 =

(
1 +
√
−3

2

)(
1−
√
−3

2

)
so that 2, 1 +

√
−3, and 1−

√
−3 are associates.

What are the units of Z[ω]? Recall that N(a + b
√
−3) = a2 + 3b2. In Z[ω], we have that N(a + bω) =

(a+ bω)(a+ bω) = a2 − ab+ b2. Thus, the only units are ±1,±ω,±ω2.

Algebraic Phase: key fact is that
(
−3
p

)
= 1 only when(

−1

p

)(
3

p

)
=

(
−1

p

)(p
3

)
(−1)

p−1
2 =

(p
3

)
= 1

which is the case if and only if p ≡ 1 mod 3.

What are the primes in Z[ω]?

•
√
−3

• π such that N(π) = p ≡ 1 mod 3

• p ≡ 2 mod 3

Let χ(n) = nth term of 1,−1, 0, 1,−1, 0, . . ., so that

χ(p) =


1 if p = ππ(split),

−1 if p stays prime (inert),

0 if 3 = π2 · unit.

Now onto the analytic phase.

ζQ(
√
−3)(s) =

∑
α∈Z[ω]
α 6=0

up to units

1

N(α)s
= ζ(s)L(χ, s)



Letting R(x) = #{α ∈ Z[ω] | α 6= 0, N(α) ≤ x up to units}

Dirichlet character χ relevant system of numbers L(χ, 1)

χ mod 3 (1,−1, 0, . . .) Z[ω]
π

3
√

3
=

1

6

2π√
3

χ mod 4 (1, 0,−1, 0, . . .) Z[i]
π

4
=

1

4

2π√
4

χ mod 8 (1, 0, 1, 0,−1, 0,−1, 0, . . .) Z[
√
−2]

π

2
√

2
=

1

2

2π√
8

Note that the boxed number is the number of units in the relevant number system.

However, in Z[
√
−5], we don’t have unique factorization, because (for example)

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

We don’t want to try to add in 1+
√
−5

2 , because it has a non-integer norm. The only units in Z[
√
−5] are ±1.

What is the relevant Dirichlet character for Z[
√
−5]? First, let’s Vgure out

(
−5
p

)
, because we’ve seen that that

is useful information. For p 6= 2, 5,(
−5

p

)
= (−1)

p−1
2

(
5

p

)
= (−1)

p−1
2

(p
5

)

=

{
1 if p ≡ 1, 3, 7, 9 mod 20,

−1 if p ≡ 11, 13, 17, 19 mod 20.

The function χ : U20 → {±1} is multiplicative, χ(mn) = χ(m)χ(n). Then we extend the function to Z by
setting χ(n) equal to 0 when gcd(n, 20) 6= 1.

What would we predict L(χ, 1) is? We’d guess 1
2 ·

2π√
20

= π
2
√
5
.

Computing directly,

L(χ, 1) =

∫ 1

0

x+ x3 + x7 + x9 − x11 − x13 − x17 − x19

x(1− x20)
dx

=

∫ 1

0
1 + x2 + x6 + x8 − x10 − x12 − x16 − x18 + x20 + x22 + · · · dx

= 1 +
1

3
+

1

7
+

1

9
− 1

11
− · · · = π

5

So our guess was oU by a factor of 2.

We all know the result in Z[i] that

p ≡ 1mod ⇐⇒ p = a2 + b2 ⇐⇒
(
−1

p

)
= 1 ⇐⇒ p = N(α) = αα

But in Z[
√
−5] similar statements are completely false.(

−5

3

)
= 1, but 3 6= a2 + 5b2



(
−5

7

)
= 1, but 7 6= a2 + 5b2

−5 ≡ � mod 2, but 2 6= a2 + 5b2

Finally works for (
−5

29

)
= 1, and 29 = 32 + 5 · 22

Also note that
3 · 3 = 22 + 5 · 12

7 · 7 = 22 + 5 · 32

3 · 7 = 12 + 5 · 22

2 · 3 = 12 + 5 · 12

2 · 7 = 33 + 5 · 12

2 · 3 · 7 6= a2 + 5b2

2 · 29 6= a2 + 5b2

3 · 29 6= a2 + 5b2

2 · 3 · 29 = 174 = 72 + 5 · 52 = 132 + 5 · 12

Let
S =

{(
−5
p

)
= 1, p = x2 + 5y2

}
and T =

{(
−5
p

)
= 1, p 6= x2 + 5y2

}
.

If s1, . . . , sm ∈ S, and t1, . . . , tn ∈ T , then

s1 · · · smt1 · · · tn = x2 + 5y2 ⇐⇒ n is even
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Today we’ll talk about ideals of rings.

Givenm,n ∈ Z, consider the set I = {am+ bn | a, b ∈ Z}. We write this set asmZ+nZ, or as (m,n). There’s
some amibguity as to whether (m,n) refers to gcd(m,n) or this set, but it’s not so bad; in fact I = (m,n)Z.

Note that I is closed under multiplication, and that ZI = I , i.e. for any a ∈ I and n ∈ Z, an ∈ I . A subset of Z
with these two properties is called an ideal. For example, I = {0} is an ideal, Z is an ideal of itself, and nZ is an
ideal for any n. In fact, every ideal of Z is of that form:

Proposition 1. Given an ideal I ⊆ Z, there is some n ∈ Z such that I = nZ.

Proof. Assume I 6= {0}. So I contains some least positive integer n. We claim that I = nZ. We clearly have
that I ⊇ nZ, but we need to show the other inclusion. For any x ∈ I , we know there exist q, r ∈ Z such
that x = nq + r and 0 ≤ r < n. But because I is closed under addition and multiplication, we have that
x− nq = r ∈ I , so we must have r = 0 (otherwise n wouldn’t be the smallest positive integer in I).

We say that an ideal of the form nZ are “principal”, and we just showed that every ideal of Z is prinipcal. In
modern terms, what this shows is that Z is a principal ideal domain.

Z[i] is also a PID.

Proposition 2. If p ≡ 1 mod 4, then p = a2 + b2. Proof: there exists an x such that x2 ≡ −1 mod p.

Proof. Let I = {a + bi | a, b ∈ Z, a ≡ xb mod p}. It’s clearly closed under addition. It is closed under multipli-
cation 1, and also by i, because if a+ bi ∈ I then −b ≡ x(xb) ≡ xa mod p. Therefore by the distributive law it
is closed under multiplication by Z[i]. Thus I is an ideal.

We claim that I = pZ + (x + i)Z. Because p ∈ I and (x + i) ∈ I , we must have that I ⊇ pZ + (x + i)Z.
Conversely, if a+ bi ∈ I , then a+ bi = (xb+ pn) + bi = pn+ (x+ i)b, so I ⊆ pZ + (x+ i)Z.

We can talk about

Z[i]I = {equivalence classes of Z[i] under the relation α ∼ β when α ∈ β ∈ I}.

Because Z[i] is a PID, I = (α) = αZ[i], we have that

N(I) := #Z[i]I = #Z[i]α = N(α) = a2 + b2 = p.

A principal ideal in a ring R is just an ideal of the form αR = {αx | x ∈ R}. This is also written (α).

Back to Z[
√
−5]. Even if −5 ≡ x2 mod p, it isn’t necessarily true that p = a2 + 5b2; for example, p = 2, 3, 7. On

the other hand, 29 = 32 + 5 · 22. We noticed last time that 2 · 3, 2 · 7, 3 · 7 were expressible as a2 + 5b2.

Some ideals in Z[
√
−5] are not principal: if x2 ≡ −5 mod p, let I = {a + b

√
−5 | a ≡ x mod p} = pZ +

(x +
√
−5)Z. For example, we can take p = 2, and x = 1. Is I = (α) for some α ∈ Z[

√
−5]? If so, then α | 2.

The only α ∈ Z[
√
−5] such that α | 2 are α = ±1,±2. But ±2 doesn’t divide 1 +

√
−5, so we’d have to have

α = ±1, and thus I = Z[
√
−5]. However, 1 /∈ Z[

√
−5]:

(diagram)

area = 2
√

5, N(I) = 2.



In general, the fundamental parallelogram of pZ + (x+
√
−5)Z looks like this:

(diagram)

Recall

Theorem (Minkowski’s Theorem). If S ⊂ R2 is a symmetric convex body of area > 4 · area(�) = 4p
√

5, then S
contains a non-zero lattice point.

Let S be a closed disk with radius2 > 4p
√
5

π , say radius2 = 4p
√
5

π + ε. Then there is a non-zero α ∈ I such that

N(α) ≤ 4p
√

5

π
+ ε

Because b4
√
5

π c = 2, we can choose ε so that N(α) < 3p. Because α 6= 0, N(α) > 0.

If α ∈ I = pZ+(x+
√
−5)Z, thenN(α) is divisible byN(I) = p. Thus we must haveN(α) = p orN(α) = 2p,

so that either p = x2 + 5y2 (good), e.g. 29, or 2p = x2 + 5y2 (bad), e.g. 2, 3, 7, 23.

Euler conjectured, but Gauss proved, that if p ≡ 1, 3, 5, 7 mod 20, i.e.
(
−5
p

)
= 1, then either p = x2 = 5y2 or

2p = x2 + 5y2.
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Fermat-type theorems via geometry of numbers

Let p be a prime.

x2 ≡ −1 mod p x2 ≡ −5 mod p
R = Z[i] R = Z[

√
−5]

I = {a+ bi ∈ R | a ≡ xb mod p} is an ideal I = {a+ b
√
−5 ∈ R | a ≡ xb mod p} is an ideal

We deVne the norm of an ideal I ⊆ R to be N(I) = |R/I| = p. For α ∈ I , we have that N(α) ≡ 0 mod p. For
example, if α = a+ b

√
−5 ∈ I , then

N(α) = a2 + 5b2 ≡ (xb)2 + 5b2 ≡ (x2 + 5)b2 ≡ 0 mod p

The ideal I always looks like a lattice in our examples. The volume of a fundamental parallelogram for these
lattices was

vol(�) =

{
p if R = Z[i]

p
√

5 if R = Z[
√
−5]

Minkowski’s theorem tells us that there exists a non-zero α ∈ I such that

N(α) <


4p
π < 2p if R = Z[i]

4p
√
5

π < 3p if R = Z[
√
−5]

Therefore in Z[i], we have p = N(α) = x2+y2, while in Z[
√
−5], all we can conclude is that either p = N(α) =

x2 + 5y2, or 2p = N(α) = x2 + 5y2.

Let’s review ideals in Z. We proved that any ideal of Z is of the form nZ, for some n ∈ Z.

Note that n | m if and only if nZ ⊇ mZ.

The ideals 2Z, 3Z, 5Z, . . . are prime; a prime ideal (for our purposes) is an ideal P 6= QR for any ideals Q,R
neither of which is Z itself. Note that Z = 1Z and (Z)(nZ) = nZ.

Prime ideals in Z factor uniquely into prime ideals: for any non-zero ideal I ⊆ Z,

I = P e11 · · ·P
en
n

One of the advantages of ideals is that we don’t have to worry about units anymore. When stating unique
factorization for elements of Z, we have

6 = 2 · 3 = (−2) · (−3)

but for ideals, 6Z = (2Z)(3Z).

The ideal generated by a subset S ⊂ R is deVned to be

{sums of the form
n∑
i=1

xiai | ai ∈ S, xi ∈ R}

It is easy to check this is closed under addition, and closed under multiplication by elements of R.



For integers, this notation agrees with the notation for gcd, namely

as elements (n1, . . . , nk) = gcd(n1, . . . , nk), as ideals (n1, . . . , nk) = (gcd(n1, . . . , nk)).

Now, we can deVne the product of two ideals I and J of a ring R as being the ideal

IJ = ideal generated by {αβ | α ∈ I, β ∈ J}.

Here’s the example we’re interested in. Let R = Z[
√
−5], and let I = (2, 1 +

√
−5), J = (3, 1 +

√
−5). Then

IJ = (6, 2(1 +
√
−5), 3(1 +

√
−5),−4 + 2

√
5)

Because 2(1 +
√
−5) and 3(1 +

√
−5) are in IJ , so is their diUerence 1 +

√
−5, and it generates anything

2(1 +
√
−5) and 3(1 +

√
−5) can, so

IJ = (6, 1 +
√
−5,−4 + 2

√
−5) = ((1 +

√
−5)(1−

√
−5), 1 +

√
−5, (1 +

√
−5)2) = (1 +

√
−5)

As an example, if p is prime, and x2 ≡ −5 mod p, then I = (p, x+
√
−5), and N(I) = p. Minkowski gives two

possibilities

• there is a non-zero α ∈ I such that N(α) = p, so that I = (α) is principal! (We knew I ⊇ (α), but their
norms are equal, so we must have I = (α))

• there is a non-zero α ∈ I such that N(α) = 2p, I ) (α), and there is some ideal J such that 2p =
N(IJ) = N(I)N(J). We can see that J = (2, 1 +

√
−5).

In Z[
√
−5], if I is a non-zero ideal, then either I is principal, or IP is principal where P = (2, 1 +

√
−5).

Consequence: if I, J are non-principal, then we claim that IJ is principal.
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Let’s talk more about Z[
√
−5]. Once we understand this case, we’ll be all set to understand the general case.

Recall that
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5)

is a failure of unique factorization in Z[
√
−5], because all four of these elements are irreducible, i.e. they cannot

be written as a product of two other elements, both not units. As ideals,

(2, 1 +
√
−5)(2, 1−

√
−5) = (4, 2(1 +

√
−5), 2(1−

√
−5), 6) = (2)

and similarly
(3, 1 +

√
−5)(3, 1−

√
−5) = (3)

Thus, looking at ideals,

(6) = (2) · (3) = (1 +
√
−5)(1−

√
−5) = (2, 1 +

√
−5)(2, 1−

√
−5)(3, 1 +

√
−5)(3, 1−

√
−5)

This might cause you to think that we can Vx unique factorization by looking at ideals, and you’d be right.

Generalities on ideals

The unit ideal of a ring R is just R itself. Note that (1) = R, and that RI = I . A proper ideal is an ideal 6= (1).
A prime ideal P is a proper ideal with the property ab ∈ P =⇒ a ∈ P or b ∈ P . This should remind you of
p | ab =⇒ p | a or p | b, viewed under the slogan “to contain is to divide”.

If P is a prime ideal and P ⊇ I1 · · · In for ideals I1, . . . , In, then P ⊇ Ii for some i. Here’s the proof: if not, then
there exists ai ∈ Ii \ P for all i, and then a1 · · · an ∈ I1 · · · In ⊆ P , but the fact that P is a prime ideal would
then imply that one of the ai ∈ P , which is a contradiction.

Lastly, a maximal ideal is a proper ideal not contained in any other proper ideal. To compare, note that in Z, the
zero ideal (0) is prime, because ab ∈ (0) implies ab = 0 which implies a = 0 or b = 0, hence a ∈ (0) or b ∈ (0),
but the zero ideal is not maximal, because any proper ideal e.g. (17) will contain it.

So, in Z, we have

Ideals: (0), (1), (2), (3), (4), . . .
Prime ideals: (0), (2), (3), (5), (7), . . .

Maximal ideals: (2), (3), (5), (7), . . .

A Dedekind domain R is a domain in which

• All non-zero prime ideals are maximal.

• Every proper ideal is the product of prime ideals.

It turns out these properties already imply a kind of unique factorization. In a Dedekind domain, let I 6= (0) be a
proper ideal. Then I = P1 · · ·Pn, where each Pi 6= (0) is a prime ideals. Suppose we had a diUerent factorization
I = Q1 · · ·Qn. Then because

P1 ⊇ I = Q1 · · ·Qm
we have thatP1 ⊇ Qi for some i. ThusP1 = Qi. Continuing, we can conclude that {P1, . . . , Pn} = {Q1, . . . , Qm}.

Factorization of ideals in Z[
√
−5]

Recall that (2) = (2, 1 +
√
−5)(2, 1−

√
−5), even though the element 2 is irreducible.



We claim that if p is a prime in Z, and x2 ≡ −5 mod p has a solution, then (p) = (p, x +
√
−5)(p, x −

√
−5).

Suppose for the moment that p 6= 2, 5. Note that

(p, x+
√
−5)(p, x−

√
−5) = (p2, p(x+

√
−5), p(x−

√
−5), x2 + 5)

= (p)(p, x+
√
−5, x−

√
−5, x

2+5
p )

Because ideals are closed under addition, 2x and 2
√
−5 are also in the ideal on the right. Because p 6= 2, we

have gcd(2x, p) = gcd(x, p). If gcd(x, p) = p, then the congruence x2 ≡ −5 mod p tells us that p = 5, which
we also assumed was not the case. Thus gcd(x, p) = 1, so that the ideal on the right is (1), proving our claim.

If I ⊆ R is an ideal, we can talk about

RI = {equivalence classes under a ∼ b ⇐⇒ a− b ∈ I}

Note that in the real world, people write this as R/I , but we’ll use this notation by analogy with the PROMYS
notation Z5.

Note that RI is a ring under the obvious operations on equivalence classes.

The function
Z[
√
−5]/(p, x+

√
−5) −→ Zp

deVned by a+ b
√
−5 7−→ a− bx is an isomorphism.

It’s easy to show that if I ⊂ R is an ideal, then

RI is a Veld ⇐⇒ I is a maximal ideal.

Let’s go back and look at the ideals (2) and (5).

(2) = (2, 1 +
√
−5)(2, 1−

√
−5) = (2, 1 +

√
−5)2

(5) = (
√
−5)2

If there is no solution to x2 ≡ −5 mod p, then (p) is a maximal ideal.

Z[
√
−5]/(p) = (Z[x]/(x2 + 5))/(p) = Zp[x]/(x2 + 5)

is a Veld with p2 elements (don’t confuse the indeterminate x with the integer x from before!)

Thus, we’ve completely determined the prime ideals of Z[
√
−5].

• (0)

• “ramiVed”: the “edge cases” (
√
−5) and (2, 1 +

√
−5)

• “split”: (p, x+
√
−5) when

(
−5
p

)
= 1 and x2 ≡ −5 mod p

• “inert”: (p) when
(
−5
p

)
= −1.

Student(s): What about (p, x−
√
−5) for the split case?

Good question - that corresponds to just taking the other solution to x2 ≡ −5 mod p. In other words,

(p, x+
√
−5) = (p, (−x)−

√
−5)



Let’s return to our work from before. For the algebraic phase,

ζQ(
√
−5)(s) =

∑
ideals

I⊆Z[
√
−5]

I 6=(0)

1

N(I)s

which equals ∏
maximal P

(
1− 1

N(P )s

)−1
= ζ(s)L(χ, s)

due to unique factorization of ideals. The χ is a Dirichlet character modulo 20, namely χ(p) =
(
−5
p

)
.
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In the ring Z[
√
−5], we saw that non-zero ideals are principal, or not principal. Using Minkowski’s theorem, if

I 6= (0) is a non-principal ideal, then IP is principal where P = (2, 1 +
√
−5). In general, if p denotes principal

and n denotes non-principal, then

× p n

p p n

n n p

The proof was just that if both I and J are non-principal, then IJPP = (IP )(JP ) is principal × principal =
principal.

From yesterday, recall that

• P is a prime ideal when P 6= (1) and ab ∈ P =⇒ a ∈ P or b ∈ P

• M is a maximal ideal whenM 6= (1) andM 6⊂M ′ for any proper idealM ′

• maximal =⇒ prime

• A Dedekind domain is a domain where

– every non-zero prime ideal is maximal

– every ideal can be factored into prime ideals

– every 6= 0 ideal admits a unique factorization into primes

We haven’t actually shown that Z[
√
−5] is a Dedekind domain yet. In fact, Z[i], Z[

√
−2], Z[

√
2], Z[ω] where

ω = −1+
√
−3

2 , Z[
√
−5], and Z[−1+

√
−23

2 ] are all Dedekind domains.

However, Z[
√
−3] is not. If I = (2, 1 +

√
−3), then I is prime, but

I2 = (4, 2(1 +
√
−3), (1 +

√
−3)2) = (4, 2(1 +

√
−3),−2 + 2

√
−3) = (2)(2, 1 +

√
−3)

so that I2 = (2)I . Also, the ideal (2) doesn’t even factor into primes. In a Dedekind domain, we can cancel ideals
from both sides of an equation.

To prove that every prime ideal is maximal in these rings isn’t too ring.

For the other condition, it’s enough to show that if A and B are ideals of R with A ⊆ B, then there exists an
ideal C such that A = BC (to contain is to divide).

Assuming this is true, let’s show that every non-zero proper ideal I factors into primes. We can use the same
kind of well-ordering principle argument we do for the integers, together with the concept of the norm of an
ideal, N(I) = #R/I .

Let S = {I 6= (0), (1) | I 6= a product of prime ideals P1 · · ·Pn}. If S is non-empty, we can choose an ideal in
S of least nrom. Then certainly I is not maximal, so I ( J for some other J 6= (0). By our assumption, there is
some proper idealK such that I = JK , but N(J), N(K) < N(I) so that J,K /∈ S, hence

I = JK = P1 · · ·PnQ1 · · ·Qm.

Now, we claim that we can further reduce checking that our rings are Dedekind domains to checking that if I
an ideal in R, then there exists a non-zero J such that IJ = (α) for some principal ideal (α).



To see that that condition implies that “to contain is to divide”, suppose that A ⊆ B. Apply our condition to B,
so that there is some non-zero B′ such that BB′ = (β). Intuitively, we want to say something like

A

B
=
BB′

(β)

but that doesn’t really make sense. Let C = β−1AB′; this is clearly closed under multiplication by the ring and
under addition, and it is actually an ideal (i.e. all of its elements are in the ring R) because

A ⊆ B =⇒ AB′ ⊆ BB′ = (β) =⇒ β−1AB′ ⊆ R

Thus
BC = B(β−1AB′) = β−1ABB′ = ββ−1A = A.

So, for any of the Velds
K = Q(i), Q(

√
2), Q(

√
−3), Q(

√
−163), . . .

there is a corresponding Dedekind domain inside it

R = Z[i], Z[
√

2], Z[−1+
√
−3

2 ], Z[−1+
√
−163

2 ], . . .

We can now deVne the Dedekind zeta function ofK ,

ζK(s) =
∑
ideals
I 6=(0)

1

N(I)s
=

∏
prime ideals
P 6=(p)

(
1− 1

N(P )s

)−1

Question: What is lims→1+ ζK(s)(s− 1)?

Question: How do primes in Z factor into primes in R?

Z[i] Z[ω] Z[
√
−2] Z[

√
−5]

ramiVed
(p) = P 2

2 3 2 2,5

split
(p) = PQ
for P 6= Q

p ≡ 1 mod 4 p ≡ 1 mod 3 p ≡ 1, 3 mod 8 p ≡ 1, 3, 7, 9 mod 20

inert
(p) is prime

p ≡ 3 mod 4 p ≡ 2 mod 3 p ≡ 5, 7 mod 8 p ≡ 11, 13, 17, 19 mod 20

modulus 4 3 8 20
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Let K = Q(
√
d) where d is a squarefree integer, d 6= 1. We call K a “quadratic Veld”. It consists of all the

numbers of the form
α = a+ b

√
d, a, b ∈ Q.

We deVned the trace and the norm of α, respectively, to be

T (α) = α+ α = 2a N(α) = αα = a2 − db2.

For any α ∈ K , we have T (α), N(α) ∈ Q. We’ve been considering the set R deVned by

R = {α ∈ K | N(α), T (α) ∈ Z}.

On the homework, you should have found that

R =

{
Z[
√
d] if d ≡ 2, 3 mod 4,

Z[1+
√
d

2 ] if d ≡ 1 mod 4.

Letting

η =

{√
d if d ≡ 2, 3 mod 4,
−1+

√
d

2 if d ≡ 1 mod 4

we have that

T (η) =

{
0 if d ≡ 2, 3 mod 4,

−1 if d ≡ 1 mod 4,
N(η) =

{
d if d ≡ 2, 3 mod 4,
1−d
4 if d ≡ 1 mod 4

and that η is a root of the polynomial f ∈ Z[x] deVned by

f(x) =

{
x2 − d if d ≡ 2, 3 mod 4,

x2 + x+ 1−d
4 if d ≡ 1 mod 4.

Theorem. The ring R is a Dedekind domain. That is, every non-zero prime ideal is maximal, every ideal factors
into primes, and every non-zero proper ideal factors into primes uniquely.

Let’s Vrst show that every non-zero prime ideal is maximal.

Proposition 3. Let I be an ideal. Then we know that I is maximal ⇐⇒ R/I is a Veld.

Proof. Let x ∈ R/I , and suppose x 6= 0, i.e. x /∈ I . The ideal I + (x) is an ideal of R containing I .

Example. Let R = Z[i] = Z[x]/(x2 + 1), and let I = (p) where p is a rational prime. Then

R/I = Z[i]/(p) = (Z[x]/(x2 + 1))/(p) = Zp[x]/(x2 + 1).

This is a Veld if and only if x2 + 1 is irreducible in Zp[x].

If P ⊂ R is a maximal ideal, then R/P is a Veld with Vnitely many elements. You might know from your Vrst
year that we can only have #R/P = pn for some prime number p and some n. Since we’re in a Vnite Veld, if
you add 1 to itself over and over, you have to start getting the same values; in fact, p = 0. Thus, p ∈ P , so that
(p) ⊂ P , and thus p = PQ for some other ideal Q (because to divide is to contain).

Thus, our strategy for classifying the prime ideals of R will be to factor each of the ideals (p) in R into prime
ideals of R.



Let’s consider the case that: R = Z[
√
d], so that d ≡ 2, 3 mod 4.

If p | d, then
(p,
√
d)2 = (p2, p

√
d, d) = (p)(p,

√
d, dp) = (p)

where the last equality follows from the fact that d is squarefree, so that p cannot divide d
p , hence (p,

√
d, dp) =

(1).

If p = 2 and d = 2, 3 mod 4, then

(2) = (2, 1 +
√
d)2 = (4, 2(1 +

√
d), 1 + d+ 2

√
d) = (2)(2, 1 +

√
d, )

Thus, if p | 2d, we have that (p) = P 2 for some prime ideal P of R with N(P ) = p.

Now suppose p - 2d. We have that

R/(p) = (Z[x]/(x2 − d))/(p) = Zp[x]/(x2 − d)

and that (p) is maximal ⇐⇒ x2 − d is irreducible modulo p.

The polynomial x2 − d factors modulo p ⇐⇒ d ≡ � mod p ⇐⇒
(
d
p

)
= 1.

If p ≡ 3 mod 4, we have (
d

p

)
= (−1)

p−1
2︸ ︷︷ ︸

depends on
p mod 4

(p
d

)
︸︷︷︸

depends on
p mod d

so that the entire expression depends on p mod 4d. Thus, in the d ≡ 3 mod 4 case,

ramiVed (p) = P 2 p | 2d

split (p) = PP (−1)
p−1
2

(p
d

)
Jac = 1

inert (p) is prime the above is 6= 1

If d ≡ 2 mod 4, then d = 2e for some odd e.(
d

p

)
=

(
2e

p

)
=

(
2

p

)(
e

p

)
= (−1)

p2−1
8︸ ︷︷ ︸

depends on
p mod 8

(−1)
p−1
2

e−1
p︸ ︷︷ ︸

depends on
p mod 4

(p
e

)
Jac︸ ︷︷ ︸

depends on
p mod e

so the entire expression depends on p mod 8e (note that 8e = 4d).

DeVne a Dirichlet character χ modulo 4d as follows: when d ≡ 3 mod 4,

χ(n) =

{
0 if gcd(n, 4d) > 1,

(−1)
n−1
2

(
n
d

)
Jac if gcd(n, 4d) = 1.

In the d ≡ 2 mod 4 case, with d = 2e,

χ(n) =

{
0 if gcd(n, 4d) > 1,

(−1)
n2−1

8 (−1)
n−1
2

e−1
2

(
n
e

)
if gcd(n, 4d) = 1.

We have to check that χ(mn) = χ(m)χ(n). This follows from(mn
d

)
Jac

=
(m
d

)
Jac

(n
d

)
Jac



Thus, at least in the d ≡ 2, 3 mod 4 cases, there’s a Dirichlet character χ mod 4d such that

χ(p) =


0 if (p) = P 2,

1 if (p) = PP ,

−1 if (p) prime.
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Let p be a prime. We’re interested in how the polynomial x2−d can factor modulo p. There are three possibilities:

x2 − d ≡


(x− a)2

(x− a)(x− b) for some a 6≡ b
irreducible

Note that if x2 − d ≡ (x− a)2 = x2 − 2ax+ a2, we must have that 2a ≡ 0 mod p and that a2 ≡ −d mod p, so
that either p = 2, or p | a and hence p | d. In fact, x2 − d ≡ (x− a)2 mod p if and only if p | 2d. If p - 2d, then
we can use the Legendre symbol to distinguish the cases. In general, we can say that

x2 − d ≡


(x− a)2 if

(
d
p

)
= 0 (assuming p is odd)

(x− a)(x− b) for some a 6≡ b, if
(
d
p

)
= 1

irreducible if
(
d
p

)
= −1

Last time, we said that if d ≡ 3 mod 4, then
(
d
p

)
depends only on the value of p mod 4d. If p - 2p, then(

d

p

)
=
(p
d

)
Jac

(−1)
p−1
2

d−1
2 =

(p
d

)
Jac

(−1)
p−1
2

but this is actually an error; we only know how to make sense of the Jacobi symbol when d > 0. But it’s okay; if
d < 0, then (

d

p

)
=

(
−|d|
p

)
= (−1)

p−1
2

(
|d|
p

)
= (−1)

p−1
2

(
p

|d|

)
Jac

(−1)
p−1
2
|d|−1

2

and |d|−12 is even, so that either way, we get(
d

p

)
= (−1)

p−1
2

(
p

|d|

)
Jac

Thus, in the case that d ≡ 3 mod 4, we can deVne χ by

χ(n) =

0 if gcd(n, 2d) > 1,

(−1)
n−1
2

(
n
|d|

)
Jac

gcd(n, 2d) = 1.

Note that χ(n) depends only on n mod 4d, that χ(mn) = χ(m)χ(n), and that for a (positive) prime p,

χ(p) =


0 if x2 − d ≡ (x− a)2 mod p,

1 if x2 − d ≡ (x− a)(x− b) mod p,

−1 if x2 − d is irreducible mod p.

Because χ is a periodic function on the positive integers, we can extend χ to negative numbers as well by
deVning

χ(−1) = (−1)

(
−1

|d|

)
= (−1)(−1)

|d|−1
2 =

{
1 if d > 0,

−1 if d < 0
(because d ≡ 3 mod 4)

If χ is any Dirichlet character, we must either choose χ(−1) = ±1 because χ(−1)2 = χ((−1)2) = χ(1) = 1.
Thus, χ is an even function or odd function, depending on whether χ(−1) = 1 or −1, respectively.



When d ≡ 2 mod 4, we again get a Dirichlet character χ modulo 4d that is even or odd depending on whether
d > 0 or d < 0.

Now we consider the case of d ≡ 1 mod 4. So we need to Vgure out how the polynomial x2 + x − d−1
4 factors

modulo p.

If p = 2, then if d ≡ 1 mod 8, it factors as x(x+ 1), while if d ≡ 5 mod 8, it is x2 + x+ 1 which is irreducible.

Thus, it factors modulo 2 if and only if
(

2
|d|

)
= 1.

If p 6= 2, then

x2 + x+
d− 1

4
≡ x2 + x+

1

4
− d

4
mod p

≡
(
x+

1

2

)2

− d

4
mod p

so that the polynomial factors if and only if d4 ≡ � mod p, which is the case if and only if
(
d
p

)
= 1.

If d > 0, then
(
d
p

)
=
(
p
|d|

)
Jac
, and if d < 0, then

(
d

p

)
=

(
−|d|
p

)
= (−1)

p−1
2

(
|d|
p

)
= · · · (same trick) =

(
p

|d|

)
Thus, if p - d then x2 + x+ d−1

4 factors ⇐⇒
(
p
|d|

)
Jac

= 1, and if p | d, then

x2 + x+
d− 1

4
≡ x2 + x+

1

4
≡
(
x+

1

2

)2

Therefore, in the d ≡ 1 mod 4 case, we can let

χ(n) =


0 if (n, d) > 1,(
n

|d|

)
Jac

if (n, d) = 1.

To summarize, let d 6= 1 be squarefree. Let

D =

{
4d if d ≡ 2, 3 mod 4,

d if d ≡ 1 mod 4
and f(x) =

{
x2 − d if d ≡ 2, 3 mod 4,

x2 + x− d−1
4 if d ≡ 1 mod 4

Theorem. There is a Dirichlet character modulo D such that if p is a positive prime, then f(x) modulo p either is
square, splits, or is irreducible as χ(p) is 0, 1,−1.

Let’s go back to quadratic Velds. LetK = Q(
√
d) = Q(

√
D). Then we say that D is the discriminant ofK , and

R =

{
Z[
√
d] if d ≡ 2, 3 mod 4,

Z[−1+
√
d

2 ] if d ≡ 1 mod 4

is called the “ring of integers ofK”. Then if p is a positive prime of Z, then

(p) =


P 2 if χ(p) = 0,

PP if χ(p) = 1,

P prime if χ(p) = −1.



The “algebraic phase”:

ζK(s) =
∑
I⊆R

non-zero
ideals

1

N(I)s
=

∏
prime P
P 6=(0)

(
1− 1

N(P )s

)−1

=
∏
p∈Z
prime

∏
P |(p)

(
1− 1

N(P )s

)−1
=

∏
χ(p)=0

(
1− 1

ps

)−1
·
∏

χ(p)=1

(
1− 1

ps

)−2
·
∏

χ(p)=−1

(
1− 1

p2s

)−1

Thus,

ζK(s) = ζ(s)
∏

χ(p)=1

(
1− 1

ps

)−1 ∏
χ(p)=−1

(
1 +

1

ps

)−1
= ζ(s)

∏
p

(
1− χ(p)

ps

)−1
Writing the second product as

∏
p

(
1 +

χ(p)

ps
+
χ(p)2

p2s
+ · · ·

)
= 1 +

χ(2)

2s
+
χ(3)

3s
+ · · ·

we have that
ζK(s) = ζ(s)L(χ, s)

where χ is a quadratic Dirichlet character modulo D, which takes values 0, 1,−1.

We’re interested in Vnding

lim
s→1+

ζK(s)(s− 1) = lim
s→1+

ζ(s)(s− 1)L(χ, s) = lim
s→1+

L(χ, s) = L(χ, 1)
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R forms a lattice in C

(diagram)

#{non-zero ideals I such that N(I) ≤ x} =
1

w
·#{α ∈ R,α 6= 0 such that N(α) = a2+b2 ≤ x, where α = a+bi}

where w is the number of units of R. This is approximately equal to

1

w
· vol(circle)

vol(parallelogram)
=

1

w
· πx√
|D|/2

+O(
√
x) =

2πx

w
√
|D|

Thus L(1, χ) = 2π

w
√
|D|

. For example, for Z[i], we have D = −4 and w = 4, so

1− 1

3
+

1

5
− 1

7
+

1

9
− · · · = π

4

For Z[−1+
√
−3

2 ], we have D = −3 and w = 6, so we get

1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+ · · · = π

3
√

3

However, in Z[
√
−5] (which is not a PID), we have D = −20 and w = 2, but

L(1, χ) =
π

2
√

5
6= 2π

2
√

20

Thus,
{non-zero ideals in R = Z[

√
−5]} ←→ {non-zero (α)} t {non-principal ideals}

Let P = (2, 1 +
√
−5). Then we’ve seen that for I non-principal, IP = (α) for some α. Thus, we have a

correspondence
{non-principal ideals} ←→ {α 6= 0, α ∈ P (up to units)}

by sending an ideal I to the α that occurs as IP = (α) LetK = Q(
√
−5). Then

ζK(s) =
∑
I 6=(0)

1

N(I)s
=

∑
I 6=(0)
principal

1

N(I)s
+

∑
I non-
principal

1

N(I)s

If A(x) = #{I 6= (0), N(I) ≤ x}, then

A(x) = Ap(x) +Anp(x) = #{I principal, N(I) ≤ x}+ #{I non-principal, N(I) ≤ x}

=
1

w
#{α ∈ R,α 6= 0, N(α) ≤ x}+

1

w
#{α ∈ P, α 6= 0, N(α) ≤ 2x}

Note that on the right, N(I) ≤ x if and only if 2NI ≤ 2x if and only if N(α) ≤ 2x.

≈ 1

w

2πx√
|D|

π

2
√

5
+

1

2

2πx

2
√

5
=

π√
5
x



More generally, in Q(
√
d), let’s deVne I and J , ideals of R, to be equivalent when there are non-zero α, β ∈ R

such that (α)I = (β)J . This deVnes an equivalence relation ∼ on the non-zero ideals of R. Note that if I ∼ (γ),
then (α)I = (βγ) and hence I = (α−1βγ), so that I is prinicipal. Thus, the principal ideals form exactly one
equivalence class of ∼.

Note also that if I ∼ J and L is an ideal, then IL ∼ JL, so that we can make an operation on the equivalence
classes of ∼. If [I] is the equivalence class of I , then we can deVne

[I] · [J ] = [IJ ]

Multiplication of equivalence classes is commutative and associative, and there is an identiy, namely [(1)]. In
order to have inverses, we need to know that for any ideal I there is some J such that IJ = (α), so that

[I][J ] = [IJ ] = [(α)] = [(1)]

We showed this on the homework. Thus, the set of equivalence classes form a group, called the class group. The
number D uniquely speciVesK = Q(

√
d), so we will call the class group HD .

For example, H−4, H−3, H8, H−8 are all trivial groups.

However, H−20 is a group with two elements, because any [I] 6= [(1)] has inverse [(P )], because any non-
principal ideal I has the property that IP is principal.

We have that HD is the trivial group ⇐⇒ R is a PID ⇐⇒ R has UPF.

HD is the “obstruction” to R being a PID.

Theorem. HD is a Vnite group. We call the size of HD the class number, hD .
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As usual, K = Q(
√
d) for some squarefree d 6= 1, and R is the ring of integers in K , namely R = Z[

√
d] (in

which case D = 4d) or R = Z[−1+
√
d

2 ] (in which case D = d).

We put an equivalence relation on the non-zero ideals of R, deVned by I ∼ J if (α)I = (β)J for some non-zero
α, β ∈ R. We deVned HD to be the group of equivalence classes of ideals, under multiplication.

If HD = {[(1)]}, then every ideal is principal, which by deVnition is the case iU R is a PID, so R would also
have UPF. In fact, the converse holds as well; R has UPF implies that HD = {[(1)]}. Intuitively, the group HD

measures how far R is from being a PID. Today, we’ll be proving (only for D < 0, but it’s true in general)

Theorem. HD is a Vnite group.

Proof. If we plot points of R in C ∼= R2, then R is a lattice, with vol(R) =

√
|D|
2 . If I ⊂ R is any non-zero ideal,

then I is also a lattice, with

vol(I) = vol(R) ·N(I) =

√
|D|
2
·N(I)

(diagram)

Lemma 1. LetM = 2
π

√
|D|. Then every non-zero ideal I ⊂ R contains some α 6= 0 with N(α) < M ·N(I).

Proof. If S = the circle of radius x centered at 0, then S contains a non-zero lattice point α as long as vol(S) >
4 vol(I), or equivalently

πx2 > 2
√
|D| ·N(I)

x2 > M ·N(I)

Let x =
√
M ·N(I) + ε. Then we get an α in I such that N(α) ≤ x2, i.e. N(α) ≤ M ·N(I) (we Vddled with

this ε a bit, but sinceM ·N(I) is not an integer and N(α) is, we’re okay).

Lemma 2. Every equivalence class of ideals contains some I such that N(I) < M .

Proof. Say that [I] is an equivalence class of ideals. Choose J ∈ [I]−1, i.e. an ideal J such that IJ = principal.
There exists some non-zero α ∈ J such that N(α) < M · N(J). But then (α) ⊂ J , so that (α) = JL
for some ideal L. Thus N(α) = N(J) · N(L), and thus N(L) < M . Because [J ][L] = [(1)], we have that
[L] = [J ]−1 = [I].

Lemma 3. There are only Vnitely many ideals I of norm n.

Proof. IfN(I) = n, then we claim n ∈ I . This is becauseR/I is an abelian group under addition of size n, hence
n = 1 + · · ·+ 1 = 0.

Thus, if N(I) = n, we have that n ∈ I , and hence (n) ⊆ I . Thus I | (n) = P a11 · · ·P
at
t , and because I will also

factor into prime ideals, there can only be Vnitely many divisors of (n), and hence only Vnitely many ideals of
norm n.

Example. d = D = −23, so that R = Z[η] where η = −1+
√
−23

2 satisVes η2 + η + 6 = 0.

We have thatM ≈ 3.05, so we want to classify all the ideals of norm ≤ 3.



Given an ideal class [I] of R, we deVne the partial zeta function

ζ[I](s) =
∑
J∈[I]

1

N(J)s

Let I ′ be an ideal with II ′ = (α). If J ∼ I , then JI ′ ∼ II ′ ∼ (1), so that JI ′ = (β) for some β ∈ I ′. We actually
get a correspondence

[I]←→ {β ∈ I ′, β 6= 0 up to units}

J −→ JI ′ = (β)

J ←− (β)(I ′)−1

Thus,

ζ[I](s) = N(I ′)s
∑
β∈I′
β 6=0

up to units

1

N(β)s

We want to Vgure out

lim
s→1+


∑
β∈I′
β 6=0

up to units

1

N(β)s

 (s− 1)

(picture) The number of β such that N(β) ≤ x, β ∈ I ′, β 6= 0 is approximately

πx

vol(I ′)
=

π√
|D|
2 ·N(I ′)

To Vnd this up to units, we just divide by w = # units.
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Let K = Q(
√
d), for d 6= 1 squarefree, let D be the discriminant of K , let χ be the Dirichlet character modulo

D, and let R be the ring of integers ofK .

We’ve seen that

χ(p) =


0 (p) = P 2 (ramiVed)

1 (p) = PQ (split)

−1 (p) = prime (inert)

This let us do the “algebraic phrase”,
ζK(s) = ζ(s)L(s, χ)

Last time, we did the analytic phase, though only for D < 0: we showed that HD is Vnite, and that

lim
s→1+

ζK(s)(s− 1) =
2π

w
√
|D|

hD

where hD = #HD and w = number of units in R. Note that w = 2 unless R = Z[i], in which case w = 4, or
R = Z[ω], in which case w = 6.

Combining phases, we get the class number formula for Q(
√
D) for D < 0, when χ(−1) = −1,

L(1, χ) =
2π

w
√
|D|

hD

On the homeworks, you showed that

− π

|D|
√
|D|

D−1∑
a=1

χ(a)a =
2π

w
√
|D|

hD

and canceling a bit,

− 1

|D|

D−1∑
a=1

χ(a)a =
2

w
hD

which is just a relationship between two rational numbers.

Let’s do some examples. For D = −3, we have

− 1

| − 3|
(1− 2) =

2

6
· 1 X

For D = −4, we have

− 1

| − 4|
(1− 3) =

2

4
· 1 X

The next largest discriminant is D = −7, which corresponds to Z[−1+
√
−7

2 ], a ring that we haven’t investigated
yet.

− 1

| − 7|
(1 + 2− 3 + 4− 5− 6) =

2

2
· 1 =⇒ h−7 = 1

For D = −8, i.e. for Z[
√
−2], we have

− 1

| − 8|
(1 + 3− 5− 7) =

2

2
· 1 =⇒ h−8 = 1



For D = −20, i.e. for Z[
√
−5], we have

− 1

| − 20|
(1 + 3 + 7 + 9− 11− 13− 17− 19) =

2

2
· 2 =⇒ h−20 = 2

Now let’s consider the case ofD > 0. We now say thatK is a real quadratic Veld. The main diUerences with the
imaginary quadratic Velds is that there are inVntiely many units, and that norms of elements can be negative
(thus, we have N((α)) = |N(α)|).

For example, let’s consider Z[
√

2]. The units are±(1+
√

2)n for n ∈ Z. For α = a+b
√
d, we deVne α′ = a−b

√
d,

and then
N(α) = αα′ = a2 − db2 = ±1 ⇐⇒ α is a unit.

To see that there are inVnitely many units in Z[
√
d], note that we know there is a solution to Pell’s equation

a2 − db2 = ±1

with a+ b
√
d 6= ±1, and so |a+ b

√
d| 6= 0, 1. All powers of this solution will also be solutions.

For a ring Z[η] with η = −1+
√
d

2 , to show there are inVnitely many units, we instead want to solve

N(a+ bη) = (a+ bη)(a+ bη′) = a2 − ab+

(
−1 + d

4

)
b2 = ±1

We can do this with the magic box, for example for D = 5, in which case R = Z[−1+
√
5

2 ], we have that
−1+

√
5

2 = [0; 1], so that
0 1 1 1 1 1

0 1 0 1 1 2 3 5
1 0 1 1 2 3 5 8

Thus, R always has a unit 6= ±1.

We plot R inside R2 somewhat diUerently. We previously plotted a + bi as (a, b), for example. Now, we’ll plot
a+ b

√
d as (a+ b

√
d, a− b

√
d).

(diagram)

We can see from this picture that the volume of the fundamental parallelogram of Z[
√

2] is
√

8. In fact, in general
vol(R) =

√
|D|, regardless of whether we are looking at real or imaginary quadratic Velds.

Let ε be the smallest unit such that ε > 1. We can talk about this because the units must be on the hyperbola
xy = 1 or xy = −1, and lattice points can’t get arbitrarily close to each other.

We claim that any unit inR is±εn for some n ∈ Z. For any unit µ > 0 (we can just take−µ for a negative unit),
we must have that εn ≤ µ < εn+1 for some n, because the powers of ε are discrete and
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LetK be a quadratic Veld. What we Vgured out last class was that

lim
s→1+

ζK(s)(s− 1) =


2h log(ε)√
|D|

ifK is a real Veld,

2πh

w
√
|D|

ifK is an imaginary Veld

where D = discriminant, h = class number, w = roots of unity, and ε = fundamental unit.

Areas under hyperbolas −→ logarithms

Areas under circles, ellipses −→ π

Now let’s talk about more general Velds, not necessarily quadratic anymore. IfK = Q( 3
√

2), then

R = Z[
3
√

2] = {a+ b
3
√

2 + c
3
√

4 | a, b, c ∈ Z}.

This R is a Dedekind domain. The fundamental unit is

(1 +
3
√

2 +
3
√

4︸ ︷︷ ︸
ε

)(−1 +
3
√

2) = 1.

Then
lim
s→1+

ζK(s)(s− 1) =
π

3
√

3
log(ε)

(for this R, we have h = 1).

A number α ∈ C is algebraic if f(α) = 0 for some f(x) = a0 + a1x+ · · ·+ anx
n for some ai ∈ Q, an 6= 0.

A number Veld is a Veld of the formQ(α) for some algebraic α, e.g.Q(
√

2),Q( 3
√

2),Q(θ) where θ3 + θ+ 1 = 0.

There is an analog of the class number formula for any number VeldK .

Now, onto something seemingly unrelated. You probably know the formulas

1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
=
n2

2
− n

2

12 + · · ·+ (n− 1)2 =
n3

3
− n2

2
+
n

6

We might predict that

1m + · · ·+ (n− 1)m = Sm(n) = polynomial in n of degreem+ 1.

We declare S0(n) = n.

Consider the exponential generating function

S0(n) + S1(n)
x

1!
+ S2(n)

x2

2!
+ S3(n)

x3

3!
+ · · ·

=

∞∑
m=0

Sm(n)
xm

m!
=

∞∑
m=0

n−1∑
k=0

kmxm

m!
=

n−1∑
k=0

ekx =
enx − 1

ex − 1



and note that Taylor’s theorem implies that

Sm(n) =
dm

dxm

(
enx − 1

ex − 1

)∣∣∣∣
x=0

.

Now, 1
ex−1 would have a discontinuity at x = 0, but expanding the numerator enx − 1 as a Taylor series, we see

that it has no constant term, and it turns out (via L’Hopital’s rule) that x
ex−1 is perfectly well-behaved.

Bm =
d(m)

dx(m)

(
x

ex − 1

)∣∣∣∣∣
x=0

so
x

ex − 1
= B0 +B1x+B2

x2

2!
+B3

x3

3!
+ · · ·

m Bm
0 1
1 −1

2
2 1

6
3 0
4 − 1

30
5 0
6 1

42
7 0
8 − 1

30
9 0
10 5

66
11 0
12 − 691

2730

enx − 1

ex − 1
=
∞∑
m=0

Sm(n)xm

m!

=
enx − 1

x

x

ex − 1
=

1

x

(
nx+

n2x2

2!
+
n3x3

3!
+ · · ·

)
=

1

x

(
B0 +B1x+B2

x2

2!
+
B3

x3
3! + · · ·

)
Thus,

S0(n) = nB0

S1(n) =
n2

2!
B0 +

nB1

1!

S2(n) = 2!

(
n3

3!
B0 +

n2

2!

B1

1!
+
n

1!

B2

2!

)
The pattern seems to be

Sm(n) =
1

m+ 1

(
nm+1B0 +

(
m+ 1

1

)
B1 +

(
m+ 1

2

)
nm−1B2 + · · ·+

(
m+ 1

m

)
nBm

)
This looks somewhat similar to a binomial expansion; in fact if we expand

“
1

m+ 1

[
(n+B)m+1 −Bm+1

]′′



and replace Bk with Bk, we get the correct answer. Thus, for example,

S3(n) =
1

4

(
(n+B)4 −B4

)
=

1

4

(
n4 + 4n3B1 + 6n2B2 + 4nB3

)
Euler proved that for any evenm ≥ 2,

ζ(m) =
|Bm|(2π)m

2(m!)

and that
∞∑
m=0

Bmx
m

m!
=

x

ex − 1
= − x

1− ex
= −x

∞∑
n=0

enx

so that
∞∑
m=0

Bmx
m−1

m(m− 1)!
= −

∞∑
n=0

enx

ζ(1−m) = −Bm
m



Lecture 16 August 8, 2012

Roots of Unity

ζ1 = 1 X − 1

ζ2 = −1 X + 1 =
X2 − 1

X − 1

ζ3 = −1

2
+

√
−3

2
X2 +X + 1 =

X3 − 1

X − 1

ζ4 = i X2 + 1 =
X4 − 1

(X − 1)(X + 1)

ζ5 X4 +X3 +X2 +X + 1 =
X5 − 1

X − 1

ζ6 = −1

2
−
√
−3

2
X2 −X + 1 =

X6 − 1

(X − 1)(X + 1)(X2 −X − 1)

In general, the polynomial for ζp where p is a prime is Xp−1 +Xp−2 + · · ·+X + 1.

The nth cyclotimic Veld is

Q(ζn) = {a0 + a1ζn + · · ·+ aφ(n)−1ζ
φ(n)−1
n | ai ∈ Q}.

This is a Veld of degree φ(n).

We only really talked about quadratic Velds, e.g.Q(
√

7),Q(
√
−11). The only cylcotomic Velds that are quadratic

are Q(ζ3) = Q(
√
−3) and Q(ζ4) = Q(i). Note that we aren’t missing Q(ζ6) because Q(ζ6) = Q(ζ3).

The ring Z[ζn] is a Dedekind ring, so it has unique factorization of ideals. We’re interested in knowing how big
its class group is.

Let’s review our work for these quadratic cyclotomic Velds.

ζQ(ζ3)(s) = ζ(s)L(s, χ−3) where
n 1 2 3 4 5

χ−3(n) 1 −1 0 1 −1
= x2 + x+ 1 mod p

ζQ(ζ4)(s) = ζ(s)L(s, χ−4) where
n 1 2 3 4 5

χ−4(n) 1 0 −1 0 1
= x2 + 1 mod p

On the homework, you looked at how x4 + x3 + x2 + x+ 1 factors modulo p.

When p = 5, we get Φ ≡ (x− 1)4 = x4− 4x3 + 6x2 − 4x+ 1 mod 5.

When p ≡ 1 mod 5, Up has p− 1 elements, and Up has a generator g, and if we let h = g
p−1
5 , then h5 = 1, and

h 6= 1, so that Φ ≡ (x− h)(x− h2)(x− h3)(x− h4) mod p.

If p 6≡ 1 mod 5, then there are no roots of Φ in Zp, because if Φ(h) = 0 then h5 − 1 = Φ(h)(h− 1) = 0, so that
h is an element of order 5 in Up, hence 5 | p − 1. Thus, if p 6≡ 1 mod 5, either Φ is irreducible or it factors into
two quadratics.



Let’s suppose it factors into two irreducible quadratics, f(x) and g(x). Then Zp[x]/(f(x)) is a Veld of p2 ele-
ments. It has a root of f , let’s call it h.

Φ(x) ≡


(x− 1)4 p = 5

(x− a)(x− b)(x− c)(x− b) p ≡ 1 mod 5

irreducible p ≡ 2, 3 mod 5

P (x)Q(x), each irreducible p ≡ 4 mod 5

(p) ≡


P 4 p = 5 totally ramiVed N(P ) = p

P1P2P3P4 p ≡ 1 mod 5 totally split N(Pi) = p

P p ≡ 2, 3 mod 5 inert N(P ) = p4

P1P2 p ≡ 4 mod 5 split into two factors N(Pi) = p2

ζQ(ζ5)(s) =
∏
P

(
1− 1

N(P )s

)−1

=

(
1− 1

5s

)−1 ∏
p≡1 mod 5

(
1− 1

ps

)−1 ∏
p≡2,3 mod 5

(
1− 1

p4s

)−1 ∏
p≡4 mod 5

(
1− 1

p2s

)−2
Dirichlet characters modulo 5:

1 2 3 4

1 1 1 1 1
χ 1 i −i −1
χ2 1 −1 −1 1
χ3 1 −i i −1

Claim:
ζQ(ζ5)(s) = ζ(s)L(χ, s)L(χ2, s)L(χ3, s)

The Euler factor at p for p 6= 5 is(
1− 1

ps

)(
1− χ(p)

ps

)(
1− χ2(p)

ps

)(
1− χ3(p)

ps

)
If p ≡ 1 mod 5, this becomes (

1− 1

ps

)4

If p ≡ 2, 3 mod 5, this becomes(
1− 1

ps

)(
1− i

ps

)(
1 +

i

ps

)(
1 +

1

ps

)
=

(
1− 1

p4s

)
If p ≡ 4 mod 5, this becomes(

1− 1

ps

)(
1 +

1

ps

)(
1 +

1

ps

)(
1− 1

ps

)
=

(
1− 1

p2s

)2

Analytic Phase:

lim
s→1+

ζQ(ζ5)(s)(s− 1) =
2π2

52
√

5 log
(
1+
√
5

2

)h = L(χ, 1)L(χ2, 1)L(χ3, 1)



In theory, you know how to break this up from the homework:

L(χ, 1) =
π

5
√

5
(1 + 2i− 3i− 4) =

π

5
√

5
(−3− i)

L(χ2, 1) =
1√
5

log

(
1 +
√

5

2

)
(χ2 is diUerent because χ2 is even (since χ2(−1) = 1), so we get a log instead of a π)

L(χ3, 1) =
π

5
√

5
(−3 + i)

Multiplying these all together, we can deduce that h = 1, so that Z[ζ5] has UPF.


