PROMYS 2012 - Analytic Class Number Formula

lectures by Jared Weinstein

notes by Zev Chonoles

Lecture 1 July 2, 2012

The motivating example of a class number formula is

. 1+1 1+1 T
3 5 7 9 4

This is sometimes called the Gregory series.

For |u| < 1,
1
1 — 2 4_ 8. =
utu —u + Ty
Now integrate both sides:
1 1
1
/(]1—u2+u4—u6+--~du—/0 mdu:tanfl(u)‘ézg
3 5 7

The alternation of the signs is related to the Legendre symbol.

Let x(n) = the nth term in the sequence 1,0, —1,0,1,0,—1, ..., which is periodic with period 4.

Observations: x(nm) = x(n)x(m). Also, x(p) = (—1)]%1 = (_71) for p an odd prime, where () is the
Legendre symbol.  is an example of a Dirichlet character.

Theorem. There are infinitely many primes.

Proof (Euler-style). We can see that the harmonic series diverges by
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But notice that the harmonic series is equal to

1+1+1+1+ 1+1+1+1+ 1+1+1+1+
2 4 8 3 9 27 5 25 125
by “FOIL”ing out the product and using unique factorization.
Each of the terms in this product is a geometric series, so the product is equal to
1 1 1
1-— 1-— 1-—

1 1 1
2 3 5

The fact that this diverges implies that there exist infinitely many primes (if there were finitely many, we would
just have a product of finitely many numbers, which of course exists). O



Trick for avoiding divergent series:
1 1 1

This is the Riemann zeta function. It converges when s > 1. Euler’s factorization looks like

1 1 1 1\ !
C(s)zl—i.l—l T H (1_p5)

53 p prime

Graph:
Theorem. The limitlimg_,; ((s) — ﬁ exists.

This theorem is saying that, even though lim,_,; ((s) is infinite (because it becomes the harmonic series), and

even though limg_,; i is infinite, their growth is so matched that the limit of their difference exists.
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Proof. Using “summation by parts”,

1 1 1 1 1 1 1 1
W=ttgtgtet=U5)2s5) s )t

2 3 4 o0
1 2 3 ]
:S/laﬁﬂdx+SAde+SAde+:3[ x5+1dx

where |x] is the floor of z. Recall that for any z, we can break it into © = |z | + (), where 0 < (z) < 1. Thus

I C /°° x /°° (z) s
3/1 xsﬂdm—s . xs+1d$ s . xSHd:E—S_l sg(s)

where g(s) = [ xiafl dz. Note that

1
. *° (x) * 1
51—1}{1-*-9(8):/1 ﬁdx< ) ;dle




Therefore

: s __ 1
exists, and =14+ O

Corollary 1. The series

diverges.

Proof. Fact 1 (easily follows from our theorem):

lim ((s)(s—1)=1

s—1+

Fact 2:
1 -1
)= 11 (1 - S>
p prime p

Taking the log of both sides of fact 2,

log(¢(s)) = 3 log (1—;)_1

p prime

The Taylor series of log(1 — z) ! is

SO

1 1 1 1
log(¢(s)) = L,s T ot ] = > )
p prime p prime
where h(s) is “the trash”. I could prove for you that lim,_,;+ h(s) exists, but it’s really not that interesting. But
taking that as a given,
1
lim log(¢(s)) = Z — + (limit of h(s))

—1t
s p prime p

but lim,_,+ log(¢{(s)) doesn’t exist because lim,_,;+ ((s) doesn’t exist, so the only possibility is that )
doesn’t exist, i.e. the sum diverges.

1
p prime p

Fact 1 lets us get something stronger:

1 1
lim Z E — log (s — 1) exists.

s—1t

Theorem. There are infinitely many primes of the form 4k + 1.

Proof. If p1, ..., py are all the primes of the form 4k + 1,let N = 4(p; -+ -p,)? + 1. If p | N, then the fact that
there exists = such that 22 + 1 = 0 mod p implies that p is of the form 4k + 1, but this can’t be one of the p;, so
this is a contradiction. O



A similar proof works to show that there are infinitely many primes of the form 4k + 3.

Let

Then we know that lim_,;+ L(s) = 7. The function L(s) also has an Euler factorization, because the function

X is multiplicative:
L(s) = o~ x(n) _ 1T L_xe\T!
ns

S
n=1 p prime p

log(L(s)) = Y _ lo < x(p )>_1

p prime

Thus, as before,

and again we can “throw away” all but the linear terms in the Taylor series.

X

log(L

p prime
where lim,_,1+ g1(s) exists. Recall that
1
log(¢(s) = Y 5+ ()
p prime
where lim,_,;+ g(s) exists. As s — 17, log(L(s)) converges, and log(¢(s)) diverges. Thus,
1 1
this diverges — (log(C(s)) +log(L(s))) = Z o + (converges)
p prime
p=1 mod 4

Thus, there are infinitely many primes that are 1 mod 4, and what this tells us is that in fact
>,
p prime p

p=1 mod 4

diverges. Taking log(L(s)) —log({(s)) instead of log(L(s)) +log(¢(s)) gives us the same conclusion for primes
that are 3 mod 4. ]
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Last time, we talked about the Riemann zeta function

o0

1
((s) = Z s
which converges for s > 1, and which has a pole at s = 1. It has the (very important) Euler factorization
1\t
C(s) = H <1 - ps>
p prime

which is a consequence of unique factorization in Z. We also know “how fast” the function ((s) blows up:

. 1 .
gl_lglJr <C(s) o 1) exists.

We saw that this impies that >, 0. % diverges.

Now, we’ll transport these facts to other number systems. The first number system we see after Z is the Gaussian
integers, Z[i].

Facts about Z[i]:
Zli) ={a+bi|a,beZ}

Qli] ={a+0bi|a,beQ}
The inverse of a + bi € Q(7) is given by

1 1 a—bi a—bi

a+bi a+bi a—bi a+b?

Complex conjugation is defined by a + bi = a — bi, and it satisfies a3 = @ 3.
Student(s): Why did you write Z[i] with square brackets and Q(4) with parentheses?
Z(i) not a good notation.

The norm of & = a + bi is defined to be N(a) = aa = a® + b2.

The units of Z[i] are 1, —1,4, —i. We say that « and /3 are associates if @ = Su where u is a unit. Recall that
a | Band B | v if and only if o and (3 are associates. Here are the associates of &« = 3 + i:
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What are some of the primes of Z[i]?
Student(s): 1 +

Right. The prime 1 + 7 is weird for a lot of reasons. One is that its conjugate is also an associate: we have

Tri=1—i=(=i)(1+1i).

Another class of primes of Z[i] are 7 = a + bi where N(7) = a® + b* = p = 1 mod 4. Note that 7 and 7 are
not associates; for example, 7 = 2 4+ 3i and 7T = 2 — 3i.

The final class of primes of Z[i] are primes p of Z such that p = 3 mod 4. Note that N (p) = p*.
(plot of primes in Z[i])

Let’s review the division algorithm in Z[i]. Given «, 8 € Z[i], and 3 # 0, the number § need not be in Z[i], but
we can always find some v € Z[i] such that

N(% -7) < \f
N(% ) < %
N(a=~6) < 3N(B) < N(9)

so we have a = v + rand N(r) < N(f).

Because we have the division algorithm in Z[i], we also get unique factorization in Z[i]. If € Z[i], « # 0 or a
unit, then o = 7y - - - m; where the 7; € Z[i] are primes. This is unique up to reordering and associates.



Now back to the zeta function,

We want to define a version for Q(4). We might try

Co@y(s) = Z N

a€Z[i)

()®”

but we have a few problems. We can’t define by 0, and we’re also overcounting. The right definition is

1 1 1 1
Qo) = > = I N = X e
ezl N(«) 4 = N(a) o (a? + b?)
a#0 a>0,b>0
up to associates
Let’s calculate the first few terms:
1 1 0 1 2 0 0 1 1 > r(n)
) =Gt s Tt r T te Tttt T =2
n=1

where 7(n) = number of ways to write n = a? + b%, where a,b > 0. We have that

1 ifp=2,
r(p) =40 ifp=3mod4,
2 if p=1mod4.

This function (g;(s) is called the Dedekind zeta function for Q(4). It also has an Euler factorization, using the
same idea as the one for ((s), namely, unique factorization:

Qo) = ] (1 + N(lﬂ)s + N(7lr)28 + - ) = I (1 _ N(17T)5>_1

T prime T prime
up to associates up to associates

The primes of Z[i] were split into three classes, so let’s do the same for our Euler factorization:

com=(-2)" (0TI ()

p prime p prime
p=1 mod 4 p=3 mod 4

We can factor the terms in the third part:

aww=(-3) I (-5) I (-5) (+5)

p prime p prime
p=1 mod 4 p=3 mod 4
1\* 1\ !
o T1 (-2) I (1+4
p prime p p prime p
p=1 mod 4 p=3 mod 4

We can write this as

G =) T] (1—"“’))_1

]
p prime p



where x(n) is the nth term in the sequence 0, 1,0, —1,0, 1, ... and specifically x(p) = (%) We define a new
function from this,

where

Thus, we have that r(n) = 3_;,, x(d). Let’s do some examples:
r(17) = x(1) + x(17) = 1+ 1 = 2

r(7) =x(1)+x(7)=1-1=0
r(50) = x(1) + x(2) + x(5) + x(10) + x(25) + x(50) = 1 +0+1+0+1+0=3
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Let’s compare

= v Gl = X

n=1 a€Z[i]
a#0
up to units
Unique factorization:
I < 1\ 11 1 \!
1-— > Vs. <1 — >
P prime b’ T prime N(ﬂ) ’
up to units
We have
Cagiy(s) = C(s)L(x; s)
where .
11 x(n)
Lixs)=l=git == =5

n=1

Also,

Cog) (8) = Z T?(:Z), where r(n) = the number of ways to write n = a> + b with a > 0,b > 0.
n=1

We showed that this implied

r(n) = x(d).

dln

One can easily see that

r(n) = number of lattice points in the first quadrant on the circle of radius v/n centered at 0.

3 [ ] [ )




Just like we had

11 1 11 11 > |z
(o) =1+ 55+ 55+ ( 25)+ (25 38>+3<35 45>+ s/l pres il

we see that

r(1
o) (s) = + + e

2 3 o0
R(x) R(x) R(x)
:3/1 o1 dx+8/2 o1 daj—l—~-=8/1 Tl dx

For example, (1) = 1,7(2) = 1,7(3) = 0,7(4) = 1,r(5) = 2. Here is a graph of R(x):
Sr -

O I I I I
1 2 3 4 5

R(x) =r(1)+7(2)+---+r([z]) = # of lattice points in the first quadrant inside of (and including) the circle
of radius \/x, excluding the origin (since we didn’t actually assign a value to r(0)).
Clearly, we should have

R(z) = area of the quarter-circle = %x

In the diagram demonstrating R(5) = 5, let’s put a box to the northwest of each lattice point inside the circle.
How much do I have to increase the radius to hit the next points, in the absolute worst-case scenario? V2.
Similarly, let’s underestimate in the worst-case scenario. We get that

area of quarter-circle of radius v/z — v2 < R(x) < area of quarter-circle of radius v/z + v/2

Tz —2v22 +2) < R(z) < Z(x + 2v22 + 2)

s
4

B



Because R(x) = r(1) + - - + r(|x]), we have that

1 2) 4 .-
R(x) = r) +r(@) £+ rile)) — average number of ways a number < z can be written as a® + b*

Ed Ed

We can conclude that

i B _ 7
n—roo n 4

Going back to the zeta function,

Co@)(s) = s > Rlx) dr = S/oo m/4 d:v—l—s/oo (z) dx
1 1

1 xs—l—l xs xs—l—l

We’'re interested in this as s — 1. This isn’t fully rigorous, but we want to say that the integral s floo % dz
converges, and to a continuous fucntion of s, so that at s = 1 we write

7T/ —2\/2x+2dx§/ e(a;) da:<7T/ 2\/2x+2dm
1 1 1

4 x? x - x?
Thus s
S1_1:({1+ Co@)(s) — 457 converges,
and
: ™
Jim, Gy (s)(s —=1) = 7
= Jm L s)¢(s)(s — 1)

4 s—1t

We proved in the first lecture that lim,_,;+ ((s)(s — 1) = 1, so that

1 1

In the coming classes, we’ll do this process for other number systems, like Z[v/5], Z[/—5|, and Z,|[x].
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Last time, we proved (in an incredibly roundabout way) that

ot oo
3 5 7 4

using the arithmetic of Z[i]. There were two phases: there was an algebraic phase, where we defined the zeta

function )
C@(i)(s) = Z N (o)
a€Zli]

a#0

up to units

Because of unique prime factorization, there was an Euler product

1
o= T1 (1-y05) =L

T prime
up to units
where 1 ) )
L(X,s):1—§+§—%+

The analytic phase was computing that

lim Coen(s)(s —1) = =

s—1+ 4

Here, 7 arose as the average number of ways a natural number n can be written as n = a? 4 b? where a > 0,
b > 0. We found that by showing the number of lattice points in

v
is approximately 7.

Now, we want to forge ahead and repeat this process for other number systems. You've previously studied

ZIV=-2)={a+b/-2]|a,beZ}



The norm of a + by/—2 is defined to be N(a + b\/—2) = a? + 2b°. The norm is multiplicative, i.e. N(af) =
N(a)N(3). Using that fact, it is easy to show that the units of Z[\/—2] are just 1 and —1.

Does Z[v/—2] have a division algorithm? Yes, because a point in the plane can only get § < 1 away from an
element of Z[/—2]:

3W-20 ° ° °

pAVpY ° ° °

¢ ? 2 3

What are the primes of Z[v/—2|? Just like for Z[i], there’s one weird one, and two infinite classes.
e Weird prime: v/—2
o 7= a+ by/—2 where N(m) = a? + 2b® = p is a rational prime, p = 1,3 mod 8.
e Rational primes p for which p = 5,7 mod 8.

If p = a® + 202 for p a prime, then
a? +2b% = 0 mod p

(ab~1)? = —2mod p

(2)-)0)-

By quadratic reciprocity, this is the case if and only if p = 1,3 mod 8. Conversely, if p = 1,3 mod 8, then

(7?2) = 1, so that we can solve 72 = —2 mod p, so that p | (z++v/—2)(z—+/2). But p doesn’t divide either factor,

so p must not be prime in Z[/—2]. Say a non-trivial factorization of p is p = a3; then N (p) = p?> = N(a)N(B),
so we must be able to solve p = a® + 2b°.

and thus

By unique prime factorization in Z[/—2|, we therefore have that

1
QQ(M)(S) = Z N(a)s



- 1l <1‘N<17r>8>_1:<1_21‘*>_1p1,godg<l_;>_1p5,gods<l_p; )

T prime
1\ 1\*
o I (-5) I (1+5)
=1, d 8 p=>5,7 mod 8

up to £1

where x(n) is the nth term in the sequence 1,0,1,0,—1,0,—1,0,1,0,1,0,. .., which has period 8.
The function Y is an example of what is known as a Dirichlet character. In this case, it is a function y : Zg —
{0,1, —1} such that
0 if n is even,
x(n) =<1 ifn=1,3mod 8§,
—1 ifn=5,7mod 8.

Note that y is multiplicative, i.e. x(mn) = x(m)x(n), and that for an odd prime p, x(p) = (72)

Now for the analytic phase. We note that

1 = r(n
C@(\/?Q)(S) - Z N(a)s - Z 725)

a€Z[/-2] n=1
a#0
up to £1

where 7(n) = the number of ways of writing n = a? + 2b%, where (a,b) and (—a, —b) count as the same

solution. This is equal to

* R(x)
xs—l—l

dx
1

where R(x) = r(1)+---+r(|x]) is the number of pairs (a, b) (up to sign) where (a, b) # (0, 0) and a®+2b* < .

Geometrically, it’s the number of unit lattice points within (and including) the ellipse with horizontal semimajor
axis \/z and vertical semiminor axis /2 /v/2, together with the points on the positive x-axis.




R(x) = number of lattice points in the ellipse that lie in quadrant I or IT ~

Taking limits,

L3 - -+ =101 = lim (o =g (s)(s = 1) =

7 s—1+

1.
2
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We seen interesting examples of infinite series dealing with the number systems Z[\/—1] and Z[\/—2]|. Let’s
consider Z[v/—3]:

Y Y : :

. Y Y

1 2 3

Nnote that in one of these boxes, the distance from the center to a corner is exactly 1:

/3

%(1+\/3)

Py

1

Thus, the division algorithn doesn’t hold in Z[/—3]. Now, it doesn’t necessarily follow that unique factorization
will also fail, but in this case, it does fail. Here’s an example:

4=2.2=(1++v/=3)(1—-+V-3)

This isn’t just a case of associates looking different, because the only units in Z[/—3] are 1 and —1.

Since the centers of the rectangles seem to be causing this problem, why don’t we just add them in?



>
>
>

So, let’s consider
Zw] = Z[*HQ‘/:)’] = {“*bﬁ | a,b € Z,a =bmod 2}

where w = _1% V=3 isa primitive cube root of unity.
25 |
° ) . ) °
w
° °
1
° . °
-2 2
° °
(1)2
° ° ° ° °
—2it
Noet that w? = —w — 1. Because we can express w? in terms of 1 and w, any polynomial expression in w with

integer coefficients can be rewritten in the form a + bw, where a, b € Z. Thus

Zw)={a+bw | a,bec Z}.



2%t
) ) [ ] ° )
w w +1
° o [ ] )

-1 1
4.—. .—.7
-2 2
) (] [ ) )

a)2 -

) ) [} ) )

—2it

(rhobmus, center of one triangle, max distance is % <1)

Thus, Z[w] has division algorithm, and thus unique factorization. Our example is no longer a failure of unique

() ()

factorization, because

so that 2,1+ +/—3, and 1 — v/—3 are associates.

What are the units of Z[w]? Recall that N(a + by/—3) = a? + 3b%. In Z[w], we have that N(a + bw) =
(a+bw)(a + bw) = a® — ab + b%. Thus, the only units are +1, +-w, +w?.

Algebraic Phase: key fact is that (_73) = 1 only when

)0)- G-

which is the case if and only if p = 1 mod 3.
What are the primes in Z[w]|?
o V-3
e 7 such that N(7) = p=1mod 3
e p=2mod 3
Let x(n) = nthtermof 1, —1,0,1,—1,0,.. ., so that
1 if p = 7 (split),
Xx(p) = ¢ —1 if p stays prime (inert),
0 if 3 = 72 - unit.

Now onto the analytic phase.

QEZ(w]
a#0

up to units



Letting R(z) = #{a € Z|w] | @« # 0, N(«) < x up to units}

Dirichlet character x relevant system of numbers L(x,1)
us 1 2w
mod 3 (1,—-1,0,... Zlw L =2
xmed ) “ 3 [6]v3
7r 1 2n
mod 4 (1,0, —-1,0,... VAR -2
X ( ) [i] i~ @i
us 1
x mod 8(1,0,1,0,—-1,0,-1,0,...) Z[\/-2] ==

Note that the boxed number is the number of units in the relevant number system.

However, in Z[v/—5], we don’t have unique factorization, because (for example)
6=2-3=(1+v-5)(1—-v-5)
We don’t want to try to add in Hzﬂ, because it has a non-integer norm. The only units in Z[/—5] are 1.

What is the relevant Dirichlet character for Z[\/—5]? First, let’s figure out (_75) because we’ve seen that that

is useful information. For p # 2, 5,
-5 p=1 (5 p=1l /D
_— = —1 2 — = —1 2 <7)
()= (3) - G

1 ifp=1,3,7,9 mod 20,
-1 ifp=11,13,17,19 mod 20.

The function x : Uyp — {%1} is multiplicative, x(mn) = x(m)x(n). Then we extend the function to Z by
setting x(n) equal to 0 when ged(n, 20) # 1.

What would we predict L(x, 1) is? We'd guess 3 - % = ﬁ

Computing directly,

RS JUP SR S § R L S | U T
z(1 — x20)

1
:/ T a2 g0 48 10 412 216 18 4 20, 022 g
0

So our guess was off by a factor of 2.

We all know the result in Z[i] that
_ 2 12 —1 _
p=1lmod <= p=a“+0b <:><p>—1<:>p—N(a)—aa

But in Z[/—5] similar statements are completely false.

5

<‘3> =1, but 3 # a? + 5b?



<_75> =1, but 7 # a® + 5b°
—5 =0 mod 2, but 2 # a? + 5b°
Finally works for

-5
— ) =1 29=324+5.922
(29) ,and 29 =3“+5

Also note that

3.3=22+45.12
7-7=2%45.3°
3.7=12+5.2?
2.-3=12+5-17
2.7=33+5-17

2.3.7#a®+ 5b?
2-29 # a® + 5b°
3-29 # a? + 5b°
2.3.20=174=7"4+5-52=132+5.12
Let
Sz{(%‘r’):l,p:xz%—E)yQ} and T:{(%’) :1,p7é$2+5y2}.

Ifsy,...,8m € S,and t1,...,t, € T, then

51'--smt1~-tn:x2+5y2 <= niseven
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Today we’ll talk about ideals of rings.

Given m,n € Z, consider the set I = {am +bn | a,b € Z}. We write this set as mZ + nZ, or as (m, n). There’s
some amibguity as to whether (m, n) refers to gcd(m, n) or this set, but it’s not so bad; in fact I = (m, n)Z.

Note that [ is closed under multiplication, and that ZI = I, i.e. forany a € I andn € Z, an € I. A subset of Z
with these two properties is called an ideal. For example, I = {0} is an ideal, Z is an ideal of itself, and nZ is an
ideal for any n. In fact, every ideal of Z is of that form:

Proposition 1. Given an ideal I C Z, there is somen € Z such that I = nZ.
Proof. Assume I # {0}. So I contains some least positive integer n. We claim that / = nZ. We clearly have
that I O nZ, but we need to show the other inclusion. For any x € I, we know there exist ¢, € Z such

that x = ng + r and 0 < r < n. But because [ is closed under addition and multiplication, we have that
x —ng =r € I, so we must have r = 0 (otherwise n wouldn’t be the smallest positive integer in ). O

We say that an ideal of the form nZ are “principal”, and we just showed that every ideal of Z is prinipcal. In
modern terms, what this shows is that Z is a principal ideal domain.

Z|i] is also a PID.

Proposition 2. Ifp = 1 mod 4, then p = a® + b>. Proof: there exists an x such that x> = —1 mod p.

Proof. Let I = {a+ bi | a,b € Z,a = xb mod p}. It’s clearly closed under addition. It is closed under multipli-

cation 1, and also by 4, because if a 4 bi € I then —b = x(xb) = xa mod p. Therefore by the distributive law it
is closed under multiplication by Z[i]. Thus I is an ideal.

We claim that [ = pZ + (x + i)Z. Because p € I and (z + i) € I, we must have that I D pZ + (z + i)Z.
Conversely, if a + bi € I, then a + bi = (zb+ pn) + bi = pn+ (v +i)b, so I C pZ + (x + i) Z.

We can talk about
Z[i]; = {equivalence classes of Z[i| under the relation o ~ 5 whena € g € I}.
Because Z[i] is a PID, I = («) = aZ[i], we have that

N(I) = #Z[i); = #Zilo = N(a) = > + 1> = p.

A principal ideal in a ring R is just an ideal of the form aR = {ax | x € R}. This is also written («).

Back to Z[y/—5]. Even if —5 = x? mod p, it isn’t necessarily true that p = a? + 5b%; for example, p = 2,3, 7. On
the other hand, 29 = 32 + 5 - 22. We noticed last time that 2 - 3,2 - 7,3 - 7 were expressible as a® + 5b%.

Some ideals in Z[\/—5] are not principal: if 22 = —5mod p, let I = {a + by/=5 | @ = x mod p} = pZ +
(x + +/=5)Z. For example, we can take p = 2, and z = 1.Is I = () for some o € Z[/—5]? If so, then a | 2.
The only o € Z[v/—5] such that « | 2 are a = 41, £2. But 42 doesn’t divide 1 + v/—5, so we’d have to have
« = +1, and thus I = Z[/—5]. However, 1 ¢ Z[\/=5]:

(diagram)
area = 2v/5, N(I) = 2.



In general, the fundamental parallelogram of pZ + (x 4+ \/—5)Z looks like this:
(diagram)
Recall

Theorem (Minkowski’s Theorem). If S C R? is a symmetric convex body of area > 4 - area(o) = 4p+/5, then S
contains a non-zero lattice point.

Let S be a closed disk with radius® > 41;—\/5, say radius? = 4pV5 + €. Then there is a non-zero o« € I such that

4
N(a) < 4pV5 T
™
Because L%J = 2, we can choose € so that N(a) < 3p. Because @ # 0, N(a) > 0.

Ifa € I = pZ+ (x++/—5)Z, then N(«) is divisible by N(I) = p. Thus we must have N(«) = p or N(«) = 2p,
so that either p = 22 + 532 (good), e.g. 29, or 2p = 2% + 532 (bad), e.g. 2,3, 7, 23.

Euler conjectured, but Gauss proved, that if p = 1,3,5,7 mod 20, i.e. (?) = 1, then either p = 2% = 532 or
2p = 2 + 5y
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Fermat-type theorems via geometry of numbers
Let p be a prime.

z2=—1modp 22 = —5mod p
R = Z][i] R = Z[/-5]
I={a+bi€ R|a=2zbmod p}isanideal I ={a+by/—5€ R|a=xbmod p} is an ideal

We define the norm of an ideal I C R tobe N(I) = |R/I| = p. For a € I, we have that N(«) = 0 mod p. For
example, if « = a + by/—5 € I, then

N(a) = a® + 5b° = ({Eb)2 150 = (:c2 + 5)b2 =0 mod p

The ideal I always looks like a lattice in our examples. The volume of a fundamental parallelogram for these

vol(o) = {p if R = 7[i]

lattices was

pV5  if R = Z[\/—5]

Minkowski’s theorem tells us that there exists a non-zero o € I such that
4 . .
L <2 if R = Z[i]

N(a) <
5 < 3y if R = 7Z[y/—5)

Therefore in Z[i], we have p = N(a) = 22 +y?, while in Z[\/—5], all we can conclude is that either p = N () =
22 4+ 592, or 2p = N(a) = 22 + 5y°.

Let’s review ideals in Z. We proved that any ideal of Z is of the form nZ, for some n € Z.
Note that n | m if and only if nZ O mZ.

The ideals 27Z, 3Z, 5Z, ...are prime; a prime ideal (for our purposes) is an ideal P # QR for any ideals ), R
neither of which is Z itself. Note that Z = 1Z and (Z)(nZ) = nZ.

Prime ideals in Z factor uniquely into prime ideals: for any non-zero ideal I C Z,
I=P7". .. P

One of the advantages of ideals is that we don’t have to worry about units anymore. When stating unique
factorization for elements of Z, we have

6=2-3=(-2)(=3)

but for ideals, 6Z = (27)(37Z).
The ideal generated by a subset S C R is defined to be

n
{sums of the form > x;a; | a; € S,z; € R}
i=1

It is easy to check this is closed under addition, and closed under multiplication by elements of R.



For integers, this notation agrees with the notation for gcd, namely

as elements (ng,...,ng) = ged(ny, ..., ng), as ideals (nq,...,ng) = (ged(ny, ..., nk)).

Now, we can define the product of two ideals I and J of a ring R as being the ideal
IJ = ideal generated by {aff |a € I, € J}.

Here’s the example we're interested in. Let R = Z[v/—5], and let I = (2,1 +1/=5), J = (3,1 + v/=5). Then
IJ = (6,2(1+v=5),3(1 +v=5), -4+ 2V/5)

Because 2(1 + +/—5) and 3(1 + /—5) are in I.J, so is their difference 1 + /—5, and it generates anything
2(1 4+ +/=5) and 3(1 + v/—5) can, so

IJ=(6,1++v—=5,—4+2V=5) = ((1++v=5)(1 —v=5),14+vV—=5,(1 +vV-5)}) = (14 v-5)

As an example, if p is prime, and 22 = —5 mod p, then I = (p, z + v/=5), and N (I) = p. Minkowski gives two
possibilities

e there is a non-zero a € I such that N(«) = p, so that I = («) is principal! (We knew I O («), but their
norms are equal, so we must have I = («))

e there is a non-zero o € [ such that N(a) = 2p, [ 2 («), and there is some ideal .J such that 2p =
N(IJ)= N(I)N(J). We can see that J = (2,1 + v/—5).

In Z[v/—5], if I is a non-zero ideal, then either [ is principal, or I P is principal where P = (2,1 + v/—5).

Consequence: if I, J are non-principal, then we claim that /.J is principal.
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Let’s talk more about Z[/—5]. Once we understand this case, we’ll be all set to understand the general case.
Recall that

6=2-3=(1++v-5)(1—-+V-5)

is a failure of unique factorization in Z[/—5], because all four of these elements are irreducible, i.e. they cannot
be written as a product of two other elements, both not units. As ideals,

(2,1+vV=5)(2,1—vV=5) = (4,2(1 + V=5),2(1 — vV=5),6) = (2)
and similarly
(3,1+v=5)(3,1 —v~5) = (3)
Thus, looking at ideals,

6)=2)-B)=0101+vV-5)1—-v-5)=(2,1+v-5)(2,1-+v-5)(3,1++v-5)(3,1 —+v-5)
This might cause you to think that we can fix unique factorization by looking at ideals, and you’d be right.

Generalities on ideals

The unit ideal of a ring R is just R itself. Note that (1) = R, and that RI = I. A proper ideal is an ideal # (1).
A prime ideal P is a proper ideal with the property ab € P = a € P or b € P. This should remind you of
plab = p|aorp|b, viewed under the slogan “to contain is to divide”.

If Pisaprimeidealand P D Iy - -- I, forideals Iy, ..., I,,, then P D I; for some i. Here’s the proof: if not, then
there exists a; € I; \ P for all ¢, and then a; ---a,, € I;--- I, C P, but the fact that P is a prime ideal would
then imply that one of the a; € P, which is a contradiction.

Lastly, a maximal ideal is a proper ideal not contained in any other proper ideal. To compare, note that in Z, the
zero ideal (0) is prime, because ab € (0) implies ab = 0 which implies @ = 0 or b = 0, hence a € (0) or b € (0),
but the zero ideal is not maximal, because any proper ideal e.g. (17) will contain it.

So, in Z, we have

Ideals: (0), (1), (2), (3), (4),
Prime ideals: (0), (2), (3), (5), (7),
Maximal ideals: (2), (3), (5), (7)

5 5

A Dedekind domain R is a domain in which
e All non-zero prime ideals are maximal.
e Every proper ideal is the product of prime ideals.

It turns out these properties already imply a kind of unique factorization. In a Dedekind domain, let I # (0) be a
proper ideal. Then I = P, - - - P,,, where each P; # (0) is a prime ideals. Suppose we had a different factorization
I =0Q;: Q. Then because

Pi2I=0Q1Qn

we have that P, O @), for some i. Thus P; = ;. Continuing, we can conclude that { Py, ..., P,} = {Q1,...,Qm}.
Factorization of ideals in Z[\/—5]
Recall that (2) = (2,1 + v/—5)(2,1 — v/—5), even though the element 2 is irreducible.



We claim that if p is a prime in Z, and 22 = —5 mod p has a solution, then (p) = (p,z + /=5)(p,z — v/=5).
Suppose for the moment that p # 2, 5. Note that
(P& +V=5)(p,x = V=5) = (. p(z + V=5), p(x — v=5), 2% +5)
= (0)(p.x + V=52 — V=5, 29)

p

Because ideals are closed under addition, 2z and 21/—5 are also in the ideal on the right. Because p # 2, we
have ged(2x,p) = ged(x, p). If ged(z, p) = p, then the congruence 22 = —5 mod p tells us that p = 5, which
we also assumed was not the case. Thus ged(x, p) = 1, so that the ideal on the right is (1), proving our claim.

If I C R is an ideal, we can talk about

R; = {equivalence classes undera ~b <= a—be I}

Note that in the real world, people write this as /I, but we’ll use this notation by analogy with the PROMYS
notation Zs.

Note that Ry is a ring under the obvious operations on equivalence classes.

The function

ZIV=5]/(pyx + V=5) — Zy
defined by a + by/—5 — a — bz is an isomorphism.

It’s easy to show that if I C R is an ideal, then
Rrisafield <= I isa maximal ideal.
Let’s go back and look at the ideals (2) and (5).
(2) = 2,1+ V75)(2,1 - V5) = (2,1 + V5
(5) = (V=5
If there is no solution to 22 = —5 mod p, then (p) is a maximal ideal.
ZIV=5/(p) = (Z[z]/(2® + 5)) /(p) = L[]/ (2® + 5)

is a field with p? elements (don’t confuse the indeterminate = with the integer = from before!)

Thus, we’ve completely determined the prime ideals of Z[/—5].

e (0)
e “ramified”: the “edge cases” (v/—5) and (2,1 4+ /—5)

e “split™ (p,z + v/—5) when (%) =1land2? = -5 mod p
e “inert™ (p) when (’75> = _1.

Student(s): What about (p, x — v/—5) for the split case?

Good question - that corresponds to just taking the other solution to 22 = —5 mod p. In other words,

(p,ZL‘ + \/j5) = (p’ (—33) - \/j5)



Let’s return to our work from before. For the algebraic phase,

1
SVSIOREDY N{»
1€z
12(0)

which equals

II (1 - N(lp)) — ((5)L(x9)

maximal P

due to unique factorization of ideals. The Y is a Dirichlet character modulo 20, namely x(p) = (%’)
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In the ring Z[\/—5], we saw that non-zero ideals are principal, or not principal. Using Minkowski’s theorem, if
I # (0) is a non-principal ideal, then I P is principal where P = (2,1 + 1/—5). In general, if p denotes principal
and n denotes non-principal, then

X |pln
PPN
n|n|p

The proof was just that if both I and J are non-principal, then IJPP = (IP)(JP) is principal X principal =
principal.

From yesterday, recall that
e Pisaprime ideal when P # (1)andabe P = a € Porbe P
e M is a maximal ideal when M # (1) and M ¢ M’ for any proper ideal M’
e maximal = prime

A Dedekind domain is a domain where

— every non-zero prime ideal is maximal
— every ideal can be factored into prime ideals

— every # 0 ideal admits a unique factorization into primes

We haven’t actually shown that Z[/—5] is a Dedekind domain yet. In fact, Z[i], Z[v/—2], Z[/2], Z[w] where
w= _1%‘/_73, Z[v/—5], and Z[_l%‘/m] are all Dedekind domains.

However, Z[/—3] is not. If I = (2,1 + y/—3), then [ is prime, but
I? = (4,21 +vV=3),(1+vV=3)%) = (4,2(1 + V=3), =2+ 2v/=3) = (2)(2,1 + V=3)

so that I? = (2)I. Also, the ideal (2) doesn’t even factor into primes. In a Dedekind domain, we can cancel ideals
from both sides of an equation.

To prove that every prime ideal is maximal in these rings isn’t too ring.

For the other condition, it’s enough to show that if A and B are ideals of R with A C B, then there exists an
ideal C such that A = BC (to contain is to divide).

Assuming this is true, let’s show that every non-zero proper ideal I factors into primes. We can use the same
kind of well-ordering principle argument we do for the integers, together with the concept of the norm of an

ideal, N(I) = # R/1I.

Let S = {I # (0),(1) | I # aproduct of prime ideals P; - - - P, }. If S is non-empty, we can choose an ideal in
S of least nrom. Then certainly [ is not maximal, so I C J for some other J # (0). By our assumption, there is
some proper ideal K such that I = JK,but N(J), N(K) < N(I) so that J, K ¢ S, hence

[=JK =P PQi Qm.

Now, we claim that we can further reduce checking that our rings are Dedekind domains to checking that if 1
an ideal in R, then there exists a non-zero J such that I.J = («) for some principal ideal ().



To see that that condition implies that “to contain is to divide”, suppose that A C B. Apply our condition to B,
so that there is some non-zero B’ such that BB’ = (3). Intuitively, we want to say something like

A BB
B (B)

but that doesn’t really make sense. Let C = 371 AB’; this is clearly closed under multiplication by the ring and
under addition, and it is actually an ideal (i.e. all of its elements are in the ring R) because

ACB = AB'CBB =(8) — B 'AB'CR

Thus
BC =B(B'AB') =3 'ABB' =357 'A = A.

So, for any of the fields
K =Q(), Q(v2), Q(vV-3), Q(V=163), ...

there is a corresponding Dedekind domain inside it

R =12, Z[V2), Z[53), 2[=20=18)

We can now define the Dedekind zeta function of K,

1 I
o= ¥ = 1 (1= 57)

ideals prime ideals

1#(0) P#(p)

Question: What is lim,_,+ (x(s)(s — 1)?

Question: How do primes in Z factor into primes in R?

Z[i] Zw] Z[v—2] Z[V 5]
ramified 2 3 2 2,5
(p) = P?
split p=1mod4 | p=1mod3 | p=1,3mod8 p=1,3,7,9 mod 20
(p) = PQ
for P # Q
inert p=3mod4 | p=2mod3 | p=5,7Tmod 8 | p=11,13,17,19 mod 20
(p) is prime
modulus 4 3 8 20
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Let K = Q(v/d) where d is a squarefree integer, d # 1. We call K a “quadratic field”. It consists of all the
numbers of the form

oz:a—l—b\/g, a,beqQ.

We defined the trace and the norm of a, respectively, to be
Tla)=a+a=2a N(a) = aa = a® — db>.
For any a € K, we have T'(«), N(a) € Q. We’ve been considering the set R defined by
R={ae K|N(a),T(a) € Z}.
On the homework, you should have found that

R_{Z[\/&] ifd = 2,3 mod 4,
)z

[LVd] ifd =1 mod 4.

Letting
B Vid if d = 2,3 mod 4,
= _1%\/8 ifd =1 mod 4

we have that

d if d = 2,3 mod 4,
T(n) = {

24 ifd=1mod 4

0 if d = 2,3 mod 4,
—1 ifd=1mod 4,

and that 7 is a root of the polynomial f € Z|[x] defined by

2 —d ifd = 2,3 mod 4,
-

x2+x+11—d ifd =1 mod 4.

Theorem. The ring R is a Dedekind domain. That is, every non-zero prime ideal is maximal, every ideal factors
into primes, and every non-zero proper ideal factors into primes uniquely.

Let’s first show that every non-zero prime ideal is maximal.

Proposition 3. Let I be an ideal. Then we know that I is maximal <= R/I is a field.

Proof. LetZ € R/I, and suppose T # 0, i.e. # ¢ I. The ideal I + () is an ideal of R containing I. O
Example. Let R = Z[i] = Z[z]/(2* + 1), and let I = (p) where p is a rational prime. Then

R/I = Z[i]/(p) = (Zlz]/(«* + 1))/ (p) = Zp[a] /(=" +1).
This is a field if and only if 2% + 1 is irreducible in Z,[z].

If P C R is a maximal ideal, then R/P is a field with finitely many elements. You might know from your first
year that we can only have #R/P = p" for some prime number p and some n. Since we're in a finite field, if
you add 1 to itself over and over, you have to start getting the same values; in fact, p = 0. Thus, p € P, so that
(p) C P, and thus p = PQ for some other ideal () (because to divide is to contain).

Thus, our strategy for classifying the prime ideals of R will be to factor each of the ideals (p) in R into prime
ideals of R.



Let’s consider the case that: R = Z[\/&], so that d = 2,3 mod 4.

Ifp | d, then
(p, Vd)* = (p*,pVd, d) = (p)(p,Vd, ) = (p)

where the last equality follows from the fact that d is squarefree, so that p cannot divide %, hence (p, Vd, %) =
(1).
If p=2and d = 2,3 mod 4, then
(2) = (2,14 Vd)* = (4,2(1 + Vd),1 +d+2Vd) = (2)(2,1+ Vd,)
Thus, if p | 2d, we have that (p) = P? for some prime ideal P of R with N(P) = p.

Now suppose p 1 2d. We have that

and that (p) is maximal <= 22 — d is irreducible modulo p.
The polynomial 22 — d factors modulo p <= d =[O mod p <= (%) =1

If p = 3 mod 4, we have

depends on

p mod 4 depends on

p mod d

so that the entire expression depends on p mod 4d. Thus, in the d = 3 mod 4 case,

ramified  (p) = P2 p|2d
split (p) = PP (—1)% (%)Jac =1
inert  (p)is prime  the above is # 1
If d = 2 mod 4, then d = 2e for some odd e.

()-G)-0)0) ez @),

depends on  depends on

p mod 8 p mod 4 depends on
pmod e

so the entire expression depends on p mod 8e (note that 8e = 4d).

Define a Dirichlet character x modulo 4d as follows: when d = 3 mod 4,

0 if ged(n,4d) > 1,
x(n) = n=1 /. .
(—1)= (E)Jac if ged(n,4d) = 1.

In the d = 2 mod 4 case, with d = 2e,

0 if ged(n,4d) > 1,
x(n) = 221, n-le-l :
(=1)"5 (=1)"z =z (%) if ged(n,4d) = 1.

We have to check that x(mn) = x(m)x(n). This follows from

(7 )= (), ().



Thus, at least in the d = 2, 3 mod 4 cases, there’s a Dirichlet character Y mod 4d such that
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Let p be a prime. We’re interested in how the polynomial 2.2 —d can factor modulo p. There are three possibilities:

(z - a)?
2> —d =< (x — a)(x — b) for some a # b
irreducible

Note thatif 22 — d = (z — a)2 = 22 — 2ax + a2, we must have that 2a = 0 mod p and that a? = —d mod P, SO
that either p = 2, or p | @ and hence p | d. In fact, 2 — d = (z — a)? mod p if and only if p | 2d. If p { 2d, then
we can use the Legendre symbol to distinguish the cases. In general, we can say that

(r — a)? if % = 0 (assuming p is odd)
2> —d={ (x—a)(x —0b)forsomea #b, if % =1
irreducible if % =-1

Last time, we said that if d = 3 mod 4, then (%) depends only on the value of p mod 4d. If p 1 2p, then

()= (2)coss = (2) (s

but this is actually an error; we only know how to make sense of the Jacobi symbol when d > 0. But it’s okay; if

d < 0, then
(5 () - o= () - core ()

and MT_I is even, so that either way, we get
0 (2
b ‘d| Jac

0 if ged(n, 2d) > 1,

x(n) = (_1)%1 (%)Jac ged(n, 2d) = 1.

Note that x(n) depends only on n mod 4d, that x(mn) = x(m)x(n), and that for a (positive) prime p,

0 if 2 —d = (z — a)? mod p,
x(p) =41 if 22 —d = (v — a)(xz — b) mod p,

—1 if2? — dis irreducible mod p.

Because x is a periodic function on the positive integers, we can extend x to negative numbers as well by

defining

—_ dl—1 if d ,
x(=1) = (=1) <MT) — (_1)(_1)‘ o {1_1 ;fd i 8 (because d = 3 mod 4)

If y is any Dirichlet character, we must either choose x(—1) = 41 because x(—1)? = x((—1)?) = x(1) = 1.
Thus, x is an even function or odd function, depending on whether y(—1) = 1 or —1, respectively.



When d = 2 mod 4, we again get a Dirichlet character x modulo 4d that is even or odd depending on whether
d>0ord<0.

Now we consider the case of d = 1 mod 4. So we need to figure out how the polynomial 22 + 2 — % factors
modulo p.
If p = 2, then if d = 1 mod 8, it factors as z(x + 1), while if d = 5 mod 8, it is 22 + = + 1 which is irreducible.

Thus, it factors modulo 2 if and only if (%) =1.

If p # 2, then

d—1 1 d
2 a—1 9 L a
z°+x+ 1 =z +m~|—4 mod p

PR
x2 4mop

so that the polynomial factors if and only if % = [ mod p, which is the case if and only if ( %) =1

If d > 0, then (%) = (ﬁ% ,and if d < 0, then

(£) () =0 (5) - ot ()

Thus, if p t d then 22 + 2 + % factors <— (‘%O = 1,and if p | d, then
Jac

Ik S L P 2

Therefore, in the d = 1 mod 4 case, we can let

0 if (n,d) > 1,
x(n) = (n> if (n,d) =1
|d| Jac
To summarize, let d # 1 be squarefree. Let
4d ifd = 2,3 mod 4 2_d if d = 2,3 mod 4
D— i ,3 mod 4, and fla) = T . i ,3 mod 4,
d ifd=1mod4 IL‘2—|—1‘—% ifd =1 mod 4

Theorem. There is a Dirichlet character modulo D such that if p is a positive prime, then f(x) modulo p either is
square, splits, or is irreducible as x(p) is 0,1, —1.

Let’s go back to quadratic fields. Let K = Q(v/d) = Q(v/D). Then we say that D is the discriminant of K, and

R Z[\/d] if d = 2,3 mod 4,
B Z[flﬂ/a] ifd=1mod 4

is called the “ring of integers of K. Then if p is a positive prime of Z, then

p? if x(p) = 0,
(p) = { PP if x(p) =1,
P prime if x(p) = —1.



The “algebraic phase”:

1 I
o= 3 i~ I (= 57)

ICR prime P
non-zero
ideals P#(0)

-1 HK“N&D)&)I: 1] (“5) 1] (1‘pl> r_[_1<1‘

pEZ P|(p
prime

Thus,

Ckl(s)=¢(s) ] (1—;>_1 11 <1+1>_1:<(5)H<1_X(p)

x(p)=1

Writing the second product as

(4 X0 X024 ) 20

S 2s s s
. P 2 3
we have that
C(s) = C(s)L(x, s)
where  is a quadratic Dirichlet character modulo D, which takes values 0, 1, —1.

We’re interested in finding

lim (x(s)(s—1) = lim {(s)(s—1)L(x,s) = lim L(x,s) = L(x,1)

s—1+ s—1+ s—1+
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R forms a lattice in C

(diagram)

1
#{non-zero ideals I such that N(I) < z} = E-#{a € R, a # 0 such that N(a) = a®>+b? < x, where a = a+bi}

where w is the number of units of R. This is approximately equal to

vol(circle) 1 T 2rx

1
w  vol(parallelogram)  w | /|D]|/2 +O0Wr) = w/|D|

Thus L(1,x) = —2%—. For example, for Z[i], we have D = —4 and w = 4, so

w4/|D|
S N T
3 5 79 4
For Z[_HQ‘/?S], we have D = —3 and w = 6, so we get
S SV N S N S
24 5 7 8 33

However, in Z[v/—5] (which is not a PID), we have D = —20 and w = 2, but

2T

v
2v5 7 220

L(1,x)

Thus,
{non-zero ideals in R = Z[/—5]} «— {non-zero («)} U {non-principal ideals}

Let P = (2,1 + v/—5). Then we’ve seen that for I non-principal, /P = («) for some «. Thus, we have a
correspondence
{non-principal ideals} +— {a # 0,a € P (up to units)}

by sending an ideal I to the « that occurs as [P = (a) Let K = Q(v/—5). Then

1 1 1
K= 2 NIy T 2 Ny T A WOy
I1#(0) I#(0) I non-

principal principal
If A(x) = #{I # (0), N(I) < x}, then

A(x) = Ap(z) + Anp(x) = #{I principal, N(I) < z} + #{I non-principal, N(I) < x}

1 1
= —#{aeRa#0,Na)<z}+ —#{a€ Pa#0,N(a) <2z}
w w
Note that on the right, N(I) < z if and only if 2N T < 2z if and only if N(a) < 2z.

2t 0w 1 27x T

1
w DI 2 Vs

~
~



More generally, in Q(\/&), let’s define I and J, ideals of R, to be equivalent when there are non-zero o, 5 € R
such that (a)I = (3)J. This defines an equivalence relation ~ on the non-zero ideals of R. Note that if [ ~ (7),
then (o) = (B7) and hence I = (a~!57), so that [ is prinicipal. Thus, the principal ideals form exactly one
equivalence class of ~.

Note also that if I ~ J and L is an ideal, then IL ~ JL, so that we can make an operation on the equivalence
classes of ~. If [I] is the equivalence class of I, then we can define

1) - 1] = [1J]

Multiplication of equivalence classes is commutative and associative, and there is an identiy, namely [(1)]. In
order to have inverses, we need to know that for any ideal I there is some J such that /.J = («), so that

] = 1] = [(@)] = [(1)]

We showed this on the homework. Thus, the set of equivalence classes form a group, called the class group. The
number D uniquely specifies K = Q(+/d), so we will call the class group Hp.

For example, H_4, H_3, Hg, H_g are all trivial groups.

However, H_9( is a group with two elements, because any [I| # [(1)] has inverse [(P)], because any non-
principal ideal I has the property that I P is principal.

We have that Hp is the trivial group <= RisaPID <= R has UPF.
Hp is the “obstruction” to R being a PID.

Theorem. Hp is a finite group. We call the size of Hp the class number, hp.



Lecture 13 July 30, 2012

As usual, K = Q(v/d) for some squarefree d # 1, and R is the ring of integers in K, namely R = Z[v/d] (in
which case D = 4d) or R = Z[fl%‘/a] (in which case D = d).

We put an equivalence relation on the non-zero ideals of R, defined by I ~ J if (o) = (). for some non-zero
o, 8 € R. We defined Hp to be the group of equivalence classes of ideals, under multiplication.

If Hp = {[(1)]}, then every ideal is principal, which by definition is the case iff R is a PID, so R would also
have UPF. In fact, the converse holds as well; R has UPF implies that Hp = {[(1)]}. Intuitively, the group Hp
measures how far R is from being a PID. Today, we’ll be proving (only for D < 0, but it’s true in general)

Theorem. Hp is a finite group.

Proof. If we plot points of R in C = R, then R is a lattice, with vol(R) = Y—— ‘D| .If I C R is any non-zero ideal,
then I is also a lattice, with

vol(I) = vol(R) - N(I) = ~—
(diagram)
Lemma 1. Let M = 2/|D|. Then every non-zero ideal I C R contains some v # 0 with N(a) < M - N(I).

Proof. If S = the circle of radius x centered at 0, then S contains a non-zero lattice point « as long as vol(S) >

4vol(I), or equivalently
rx? > 24/|D|- N(I)

x> M- N(I)
Let z = /M - N(I) + e. Then we get an « in I such that N(a) < 22, ie. N(a) < M - N(I) (we fiddled with
this € a bit, but since M - N () is not an integer and N («) is, we’re okay). O

Lemma 2. Every equivalence class of ideals contains some I such that N(I) < M.

Proof. Say that [I] is an equivalence class of ideals. Choose J € [I]71, i.e. an ideal J such that I.J = principal.

There exists some non-zero o € J such that N(a) < M - N(J). But then (o) C J, so that (o) = JL
for some ideal L. Thus N(a) = N(J) - N(L), and thus N(L) < M. Because [J][L] = [(1)], we have that
(L] =[]t =[1]. O

Lemma 3. There are only finitely many ideals I of norm n.

, then we claim n € I. This is because R/I is an abelian group under addition of size n, hence

Proof. f N(I) =n
ATt +T=0.
Thus, if N(I) = n, we have that n € I, and hence (n) C I. Thus I | (n) = P{"* - -- P{"*, and because I will also

factor into prime ideals, there can only be finitely many divisors of (n), and hence only finitely many ideals of
norm n. O

O
ample. d = D = —23, so that R = Z[n] where n = > satisfies n* +n + 6 = 0.

We have that M = 3.05, so we want to classify all the ideals of norm < 3.



Given an ideal class [I] of R, we define the partial zeta function

Cn(s) = Z N(lj)s

Je[I]

Let I’ be an ideal with II' = («).If J ~ I, then JI' ~ II' ~ (1), so that JI' = () for some /3 € I'. We actually
get a correspondence
[I] «+— {B €I, 3 # 0 up to units}

J— JI' = (B)
J+— (B)I)!

Thus, .
s) = N(I')®
el
A0
up to units

We want to figure out

. 1
lim Z NGy (s—1)

s—1t
per’
B#0

up to units

(picture) The number of 3 such that N(8) < z, 8 € I,  # 0 is approximately

s ™

0

To find this up to units, we just divide by w = # units.



Lecture 14 August 1, 2012

Let K = Q(\/&), for d # 1 squarefree, let D be the discriminant of K, let x be the Dirichlet character modulo
D, and let R be the ring of integers of K.

We’ve seen that

0 (p) = P? (ramified)
x(p) =41 (p) = PQ (split)
—1 (p) = prime (inert)
This let us do the “algebraic phrase”,
(i (s) = ¢(s)L(s, x)
Last time, we did the analytic phase, though only for D < 0: we showed that Hp is finite, and that

lim Cpels)(s — 1) = —r

h
s—1t w,/|D| b

where hp = #Hp and w = number of units in R. Note that w = 2 unless R = Z[i], in which case w = 4, or
R = Z|w], in which case w = 6.

Combining phases, we get the class number formula for Q(v/D) for D < 0, when x(—1) = —1,
2T

hp
w+/|D|

L(LX) =

On the homeworks, you showed that

B = e

and canceling a bit,
| b1
—ﬁ Z x(a)a = —
a=1

which is just a relationship between two rational numbers.

Let’s do some examples. For D = —3, we have
1
————(1=-2)==-1 v
| =3l

For D = —4, we have ) 5

——1=-3)=-"1 v
The next largest discriminant is D = —7, which corresponds to Z] —1+2ﬁ]’ a ring that we haven’t investigated
yet.

1 2

For D = -8, i.e. for Z[\/—2], we have

1

2
———(143-5-T)==-1 = h.g=1
B )73 )



For D = —20, i.e. for Z[/—5], we have

1 2

Now let’s consider the case of D > 0. We now say that K is a real quadratic field. The main differences with the
imaginary quadratic fields is that there are infintiely many units, and that norms of elements can be negative
(thus, we have N ((«)) = |N(«)|).

For example, let’s consider Z[\@] The units are +(1+ ﬂ)” forn € Z.For a = a+b\/d, we define o/ = a—b\/d,
and then
N(a) = ad’ = a® — db* = +1 <= ais a unit.

To see that there are infinitely many units in Z[+/d], note that we know there is a solution to Pell’s equation
a® — db® = +1
with a + bv/d # 41, and so |a + bv/d| # 0, 1. All powers of this solution will also be solutions.
—14+vd

For a ring Z[n] with n = =<, to show there are infinitely many units, we instead want to solve

—1+d
N(a—i—bn):(a+b77)(a—|—b?7'):a2—ab—|—< 4+ >b2::|:1

—14+5
2

We can do this with the magic box, for example for D = 5, in which case R = Z] ], we have that

_1%\/5 = [0; 1], so that

o
—
—_

= O
O =
—
—
w
ot
0.¢]

Thus, R always has a unit # +1.

We plot R inside R? somewhat differently. We previously plotted a + bi as (a, b), for example. Now, we’ll plot

a+ bvd as (a+b\/cj,a—b\/(§).
(diagram)

We can see from this picture that the volume of the fundamental parallelogram of Z[/2] is v/8. In fact, in general
vol(R) = \/|D|, regardless of whether we are looking at real or imaginary quadratic fields.

Let € be the smallest unit such that ¢ > 1. We can talk about this because the units must be on the hyperbola
2y = 1 or xy = —1, and lattice points can’t get arbitrarily close to each other.

We claim that any unit in R is +=€” for some n € Z. For any unit ¢t > 0 (we can just take — for a negative unit),
we must have that €” < u < ¢"*t1 for some n, because the powers of € are discrete and



Lecture 15 August 6, 2012

Let K be a quadratic field. What we figured out last class was that

2h log(e)
D
lim (g (s)(s —1) = vIPl

1+ 2mh
7 e if K is an imaginary field

w10l

where D = discriminant, h = class number, w = roots of unity, and ¢ = fundamental unit.

if K is a real field,

Areas under hyperbolas — logarithms
Areas under circles, ellipses — 7

Now let’s talk about more general fields, not necessarily quadratic anymore. If K = Q(+/2), then
R=7Z[V2]={a+bV2+cV4|a,b,ceZ}.
This R is a Dedekind domain. The fundamental unit is

(1+V2+Va)(-1+V2) =1

Then .
i Ge(s)(s — 1) = 2 log(e)
(for this R, we have h = 1).
A number o € C is algebraic if f(«) = 0 for some f(z) = ap + a1z + - - - + aa™ for some a; € Q, a,, # 0.
A number field is a field of the form Q(«) for some algebraic o, e.g. Q(ﬂ) Q(\Bﬁ) Q(6) where 03 +6+1 = 0.

There is an analog of the class number formula for any number field K.

Now, onto something seemingly unrelated. You probably know the formulas

nn—1) n? n
14924 == =
+24---+(n-1) 5 5”35
3 2
12 4 ... = n
+--+(n—-1) 3 2+6

We might predict that
1™+ 4+ (n—1)" = S,,(n) = polynomial in n of degree m + 1.

We declare Sy(n) = n.

Consider the exponential generating function




and note that Taylor’s theorem implies that
am [e™ —1
Sm(n) =
dz™ \ e* —1
Now, ﬁ would have a discontinuity at # = 0, but expanding the numerator e™® — 1 as a Taylor series, we see
that it has no constant term, and it turns out (via L’Hopital’s rule) that s is perfectly well-behaved.

g -4 (=
dz(m) \ e —1

2 3

i X X
pr— ZBQ+B1:E+BQE+B;3§+"'

=0

=0

SO

= = =
M,_.owoo\]@m%wt\v»ao‘g
Sl

Thus,

The pattern seems to be

1 m—+1 m+1 _ m+1
5m<”>:m+1<”m“30+< 1 )Bﬁ( 2 >”m 132*"'*( m )”Bm)

This looks somewhat similar to a binomial expansion; in fact if we expand

1
« — [(TL+ B)m+1 N Bm—l—l]”
m



and replace B* with By, we get the correct answer. Thus, for example,

1 1
S3(n) = 7 ((n+ B)' - BY) = 1 (n' 4+ 4n®By + 6n” By + 4nBs)
Euler proved that for any even m > 2,
_ [Bm|(2m)™
and that
. Bpa™ T x o
Z ml er—1  1—e° :—mZe
m=0 n=0
so that - -
> Bpa™ S
m(m — 1)!
= n=0
B
((1—m)=—=m



Lecture 16 August 8, 2012

Roots of Unity

=1 X -1
X221
C2 + ¥ 1
1 -3 X3 -1
= L vV ° X24+X+4+1=
G 5T tAS X1
Xt—1
=1 X24+1=
G (X —1)(X +1)
4 3 2 X5_1
Gs X+ X34+ X24+X+1=
X -1
1 /-3 X6 -1
(6=—=— — X2 - X+1=
2 2 X -DX+D)(X2-X —1)

In general, the polynomial for (, where p is a prime is XP~! + XP72 ... 4+ X + 1.
The nth cyclotimic field is

Q(6n) = {ao + 16 + - + agy 1627 | a; € Q).
This is a field of degree ¢(n).

We only really talked about quadratic fields, e.g. Q(v/7), Q(v/—11). The only cylcotomic fields that are quadratic
are Q(¢3) = Q(v/—3) and Q({4) = Q(¢). Note that we aren’t missing Q((¢) because Q((s) = Q((3).

The ring Z[(,] is a Dedekind ring, so it has unique factorization of ideals. We're interested in knowing how big
its class group is.

Let’s review our work for these quadratic cyclotomic fields.

_ n 12 34 5 4

Co(ey) (8) = C(s)L(s, x~3) where s |1 -1 01 -1 = z“+ 2+ 1mod p
_ no |12 3 45

Coeea) (8) = C(s)L(s, x—4) where a1 0 -1 01 = x“+ 1 mod p

On the homework, you looked at how x* + 23 + 22 + x + 1 factors modulo p.

When p = 5, we get ® = (z — 1)* = 24 — 423 + 622 — 42 + 1 mod 5.

When p = 1 mod 5, U, has p — 1 elements, and U), has a generator g, and if we let h = g%, then h® = 1, and
h # 1,s0 that ® = (z — h)(z — h?)(z — h?) (2 — h*) mod p.

If p # 1 mod 5, then there are no roots of ® in Z,, because if ®(h) = 0 then h% — 1 = ®(h)(h — 1) = 0, so that
h is an element of order 5 in Uj, hence 5 | p — 1. Thus, if p # 1 mod 5, either ® is irreducible or it factors into
two quadratics.



Let’s suppose it factors into two irreducible quadratics, f(z) and g(z). Then Z,[x]/(f(z)) is a field of p? ele-
ments. It has a root of f, let’s call it A.

(z—1)* p=>5
(x—a)(x—=b)(x—c)(x—b) p=1modb
d(x) =
irreducible p=2,3mod5
P(z)Q(x), each irreducible  p =4 mod 5
P4 p=>5 totally ramified N(P)=p
(v) = PP,P3P, p=1mod5 totally split N(P)=p
b= P p=2,3mod5 inert N(P) = p*
PP p=4mod5 split into two factors N(P;) = p?
-1
Q) (8 ( N(P >
1\"! 1\ ! 1\ 2
“(-5) I <1‘ps> 0 (5s) I (e 5x)
p=1mod 5 p=2,3 mod 5 p=4 mod 5
Dirichlet characters modulo 5:
1 2 3

1|1 1 1 1
x |1 -1 —1
211 -1 -1 1
21 =i i =1

Claim:
Caies) (8) = C(8)L(x, )L(X?, )L, 5)
The Euler factor at p for p # 5 is

(-D-2)1-52) ()

If p = 1 mod 5, this becomes

If p = 2,3 mod 5, this becomes

(=5) C=3) (o) () = (0-30)

If p = 4 mod 5, this becomes

O IO

lim s—1)= h = L(x,1)L(x% 1)L(x>,
Jlim Goes)(8)(s — 1) 52\/510g<1+\/5) 06 DLOG DL, 1)

Analytic Phase:




In theory, you know how to break this up from the homework:

L(x,1) = 5\/5(1—1—21 3i—4) = 7( —1)
IO 1) = (
(x? is different because x? is even (since xy%(—1) = 1), so we get a log instead of a 7)
L(x3,1) = S\f( 3+1)

Multiplying these all together, we can deduce that h = 1, so that Z[(5] has UPF.



