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Introduction

Math 326 is one of the nine courses offered for first-year mathematics graduate students at the
University of Chicago. It is the second of three courses in the year-long algebra sequence.

These notes are being live-TeXed, though I edit for typos and add diagrams requiring the TikZ
package separately. I am using the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the
material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to chonoles@math.uchicago.edu.

mailto:chonoles@math.uchicago.edu


Lecture 1 (2013-01-07)

The main subject of this course is commutative ring theory, and its relation to algebraic number
theory and algebraic geometry. We will also see some more advanced topics such as class field
theory and the Weil conjectures, though we will not go into them in depth.

There will be no exams. The assignments will appear on each Friday, on the Chalk site if it can be
set up; otherwise, on each Thursday evening, the assignments will be sent by email. They will then
be due the following Friday.

If you look on the street, you never meet a commutative ring; that’s rather strange. They are rather
shy I think. We need to ask them to come to this room. Rings, rings, please come! Rings, rings
please come! *shuffles along the floor, playing the part of the ring* Finite fields, come! Rings of
functions, come! *hops* I think they are here now.

The Mysterious Analogy Between Prime Numbers and Points

Let A be a commutative ring. We define

max(A) = {maximal ideals of A}.

There is a bijection

max(Z) {prime numbers}

∈ ∈

(p) = pZ p

There is also a bijection

max(C[T ]) C

∈ ∈

(T − α) α

More generally, there is a bijection

max(C[T1, . . . , Tn]) Cn

∈ ∈

(T1 − α1, . . . , Tn − αn) (α1, . . . , αn)

Note that (T1 − α1, . . . , Tn − αn) = {f ∈ C[T1, . . . , Tn] | f(α1, . . . , αn) = 0}.

We can walk on C, but I think it is hard walking on the prime numbers. I hope someday I can find
a pair of shoes that can help. One difficulty is that the points in C are all the same size, but the
primes are like stones of different sizes; 3 is a little bigger than 2, 5 is a little bigger than 3. . .

Let X be a compact Hausdorff space, and let A = C(X) = {continuous maps X → R}. Then there
is a bijection

max(A) X

∈ ∈

{f ∈ A | f(p) = 0} p
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If X is not compact, this is false. We can see this by considering X = R for example. In A =
{continuous maps R→ R}, we can consider the ideal

I = {f ∈ A | there is some c such that f(x) = 0 if x > c}.

There is a proposition from commutative ring theory:

Proposition. If A is a commutative ring and I ( A is a proper ideal of A, then there is some
m ∈ max(A) such that I ⊂ m.

This proposition requires the Axiom of Choice, so we will skip the proof for the moment. But the
proposition implies that there is some maximal ideal of A containing I, and no ideal of the form
{f ∈ A | f(p) = 0} can contain I, so there must be other maximal ideals.

Now consider X = {(x, y) ∈ C2 | y2 = x3 + 1}, and let A = {polynomial functions on X}. For
example, the function x sends (a, b) ∈ X to a ∈ C, and the function y sends (a, b) ∈ X to b ∈ C.
Note that

A = {C-valued functions on X written as a polynomial over C in the functions x, y}.

Then A ∼= C[T,
√
T 3 + 1], where T is the function x. This ring is a quadratic extension of C[T ],

which you should think of as being similar to an extension of Z, such as for example Z[
√

26].

There is an isomorphism A ∼= C[T1, T2]/(T 2
2 − T 3

1 − 1), where T1 7→ T and T2 7→
√
T 3 + 1. There is

also a bijection

max(A) X

∈ ∈

{f ∈ A | f(p) = 0} p

which can be deduced from the correspondence between max(C[T1, T2]) and C2,

max(C[T1, T2]) C2

⊂ ⊂

max(A) X

(Recall that there is a bijection

max(A/I)←→ {m ∈ max(A) | I ⊆ m},

where M ∈ max(A/I) corresponds to {x ∈ A | x mod I ∈M}.)

In the ring Z[
√
−26], note that we do not have unique factorization:

33 = 27 = (1 +
√
−26)(1−

√
−26).

Writing p = (3, 1 +
√
−26) and p′ = (3, 1−

√
−26), we can recover unique factorization for ideals:

(3) = pp′, (1 +
√
−26) = p3, (1−

√
−26) = p′

3

(pp′)3 = (27) = p3p′
3
.

(recall that for ideals I and J , their product is IJ = {
∑n

i=1 aibi | ai ∈ I, bi ∈ J}.)
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There is a similar situation in A: we have x3 = (y + 1)(y − 1). Define

p = (x, y + 1) = {f ∈ A | f(0,−1) = 0} ←→ (0,−1) ∈ X,

and similarly p′ = (x, y − 1)←→ (0, 1) ∈ X. Then (x) = pp′, (y + 1) = p3, and (y − 1) = p′3.

−2 −1 1 2

−2

−1

1

2

y2 = x3 + 1

Observe that the function x has a zero of order 1 at (0, 1) and (0,−1), that y+ 1 has a zero of order
3 at (0,−1), and y − 1 has a zero of order 3 at (0, 1).

Kummer was the one who realized that even though there is no unique factorization in the world of
numbers, it could be recovered in the world of ideals. This observation was then imported to the
world of geometry.

As we’ve seen, there is an analogy between Z and C[T ]. In fact, the analogy between Z and Fp[T ] is
even stronger; for example the theory of zeta functions is very similar for Z and Fp[T ]. We don’t
know the true reason why they are so similar; perhaps they are children of the same parents. But
we don’t know who their parents are; their parents are missing.

In 1912, Wegener compared the west coast of Africa and the east coast of South America,

and hypothesized that at one point they were connected. It took a long time for his theory to be
accepted.
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Lecture 2 (2013-01-09)

Noetherian rings and integral closure; intro. to algebraic number theory

Let A be a commutative ring with unity 1 ∈ A. A subring of A must contain 1; thus, for example,
2Z is not a subring of Z. We also require that a ring homomorphism respects the unities of the rings.

Integral elements, algebraic integers

The spirit of algebraic number theory:

To study Z, it is better not only to consider Z, but also to consider the friends Z[i],
Z[
√

2], . . . of Z, for they are happy to help Z.

Numbers like i,
√

2,
√

5, . . . are algebraic integers. However,
√

5
2 is not an algebraic integer. But

even though the shape of 1+
√

5
2 is a fraction, it is an algebraic integer, and similarly −1+

√
−3

2 is an
algebraic integer. Now we need a precise definition of algebraic integer.

Definition. Let A be a subring of a ring B. Then we say an element x ∈ B is integral over A when
there is an n ≥ 1 and a1, . . . , an ∈ A such that xn + a1x

n−1 + · · ·+ an = 0.

For example, if we take A = Z and B = Q(
√

5), the element x = 1+
√

5
2 satisfies x2 − x − 1 = 0.

Thus, 1+
√

5
2 is integral over Z.

Definition. Given a field K ⊇ Q, we say that an element x ∈ K is an algebraic integer when x is
integral over Z.

Definition. Let A be a subring of a ring B. The integral closure of A in B is the set

{x ∈ B | x is integral over A}.

When we have a field K that is a finite extension of Q, we denote the integral closure of Z in K by
OK . Sometimes, it is called the ring of integers of K, or the integer ring of K.

When K = Q, we have OK = Z. When K = Q(i), we have OK = Z[i].

Proposition 1. The integral closure of A in B is a subring of B.

We will prove this claim later.

Proposition 2. Let A ⊆ B ⊆ C be rings. Let B′ be the integral closure of A in B, and let C ′ be
the integral closure of A in C. Then C ′ is the integral closure of B′ in C.

We will prove this claim later. When I say that we will prove something later, it either means I will
give it later in class, or on the homework, or I will just forget to prove it.

Corollary. OK is a ring.

Let K ⊇ Q be a quadratic extension, so that K = Q(
√
m) for a squarefree m ∈ Z. Then

OK =

{
Z[
√
m] if m ≡ 2, 3 mod 4,

Z[1+
√
m

2 ] if m ≡ 1 mod 4.

Thus, for example, if K = Q(
√

5), we have OK = Z[1+
√

5
2 ].
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Now consider A = k[T ] and B = k(T )( n
√
f(T )) where f ∈ k[T ] is a polynomial with no multiple

factors. Then the integral closure of k[T ] in B is k[T, n
√
f(T )]. For example, the integral closure of

C[T ] in C(T,
√
T 3 + 1) is C[T,

√
T 3 + 1].

Definition. Let A be an integral domain wth field of fractions K. We say that A is integrally
closed if the integral closure of A in K is just A. Sometimes we instead say that A is normal.

For example, for any finite extension K ⊇ Q, the ring OK is normal.

However, Z[
√

5] is not normal, because 1+
√

5
2 is in the field of fractions Q(

√
5) and is integral over

Z[
√

5], so it is in the integral closure of Z[
√

5] in Q(
√

5), but it is not itself in Z[
√

5].

Here is another example of a non-normal ring: C[T,
√
T 3]. The field of fractions of this ring is

C(
√
T ), and

√
T /∈ C[T,

√
T 3] even though it is integral over C[T,

√
T 3]. Note that C[T,

√
T 3] ∼=

C[X,Y ]/(Y 2 −X3), where X 7→ T and Y 7→
√
T 3.

The ring C[T, T
√
T 3 + 1] is not normal, because

√
T 3 + 1 /∈ C[T, T

√
T 3 + 1]. Note that C[T, T

√
T 3 + 1] ∼=

C[X,Y ]/(Y 2 −X2(X3 + 1)), where X 7→ T and Y 7→ T
√
T 3 + 1.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y2 = x3

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y2 = x2(x3 + 1)

The property of not being normal can be thought of as as a singularity in the corresponding graph,
i.e. the set of maximal ideals has a singularity.

The integral closure of A = C[T, T
√
T 3 − 1] in its field of fractions C(T,

√
T 3 + 1) is C[T,

√
T 3 + 1] ∼=

C[X,Y ]/(Y 2− (X3 + 1)). The intersection of a maximal ideal of C[T,
√
T 3 + 1] with A is a maximal

ideal of A. This map of maximal ideals corresponds to the map of points

{(x, y) | y2 = x3 + 1} (x,y) 7→ (x,xy)−−−−−−−−−−→ {(x, y) | y2 = x2(x3 + 1)}.
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y2 = x3 + 1

surjection−−−−−−−−−→

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y2 = x2(x3 + 1)

Taking the integral closure is like dissolving the singularity. The same thing is occurring when we

take Z[1+
√

5
2 ] instead of Z[

√
5].

Proposition. C[T,
√
T 3 + 1] is the integral closure of C[T ] in C(T )(

√
T 3 + 1)

Proof. An element f ∈ C(T )(
√
T 3 + 1) is of the form f = g + h

√
T 3 + 1, where g, h ∈ C(T ).

If f is integral over C[T ], then the conjugate f = g − h
√
T 3 + 1 is also integral over C[T ], so

f + f = 2g ∈ C(T ) and ff = g2 − (T 3 + 1)h2 ∈ C(T ) are integral over C[T ]. Now using a lemma,

Lemma. PID’s are normal.

we see that we must have 2g ∈ C[T ] and g2 − (T 3 + 1)h2 ∈ C[T ]. Therefore g ∈ C[T ], hence
(T 3 + 1)h2 ∈ C[T ], and because T 3 + 1 has no repeated factors, this implies that h ∈ C[T ]. Hence
f ∈ C[T,

√
T 3 + 1].
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Lecture 3 (2013-01-11)

The number x = 1+
√

5
2 is integral over Z because it is a root of the polynomial x2 − x − 1 = 0.

However, the number x =
√

5
2 is not integral over Z because it is a root of 4x2 − 5 = 0 and not of

any monic integer polynomial.

Proposition 1. If B is a ring and A ⊂ B is a subring, and x ∈ B, then x is integral over A if
and only if A[x] ⊂ B is a finitely-generated A-module.

Recall that we say an abelian group M is an A-module when for any a ∈ A and x ∈M , we define
their product ax ∈M , and this satisfies

a(x+ y) = ax+ ay

(a+ b)x = ax+ bx

(ab)x = a(bx)

1x = x

An A-module M is finitely generated when there exist x1, . . . , xn ∈M such that

M = {a1x1 + · · ·+ anxn | a1, . . . , an ∈ A}.

Proof. If x is integral over A, then it satisfies some monic polynomial over A, say

xn + a1x
n−1 + · · ·+ an = 0.

Then A[x] is generated by 1, x, . . . , xn−1 as an A-module, because

xn = −(an + an−1x+ · · ·+ a1x
n−1)

xn+1 = −x(an + an−1x+ · · ·+ a1x
n−1) = −(anx+ · · ·+ a2x

n−1)− a1x
n

xn+2 = · · ·

Conversely, if A[x] is generated by f1, . . . , fm ∈ A[x], then there is some r ∈ N such that

f1, . . . , fm ∈ A+Ax+ · · ·+Axr

(for example, r = the largest deg(fi)). We have A[x] ⊂ A+Ax+· · ·Axr, so xr+1 = a0+a1x+· · ·+arxr
for some ai ∈ A, and therefore x is integral.

As an illustration of this proposition, note that 2
3 ∈ Q is not integral over Z because

Z[2
3 ] =

⋃
n≥1(Z + Z2

3 + · · ·+ Z2n

3n )

cannot be finitely generated as a Z-module.

Noetherian rings and modules

Definition. A commutative ring A is noetherian when any ideal of A is finitely generated.

Theorem (Hilbert, 1888). Let A be a commutative ring and B is a finitely generated ring over A.
If A is noetherian, then B is noetherian.
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When we say that B is a ring over A, what we really mean is that we have fixed a ring homomorphism
φ : A→ B. Then we say that B is finitely generated (as a ring) over A when there exist b1, . . . , bn ∈ B
such that B = φ(A)[b1, . . . , bn].

Hilbert’s theorem demonstrates that most of the rings that come up in algebraic geometry or number
theory, which are finitely generated rings over either a field k or over Z, are noetherian.

Definition. Let A be a commutative ring and M is an A-module. Then we say that M is a
noetherian A-module when all A-submodules of M are finitely generated as A-modules.

Remark. A commutative ring A can be regarded as an A-module. An ideal of a commutative ring
A is precisely an A-submodule of A. Thus, A is a noetherian ring if and only if it is a noetherian
module over itself.

Proposition 2. Let A be a commutative ring, let M be an A-module, and let N a submodule of
M .

N and M/N are f.g. A-modules =⇒ M is an f.g. A-module =⇒ M/N is an f.g. A-module

and
N and M/N are noetherian A-modules ⇐⇒ M is a noetherian A-module.

Proposition 3. If A is a commutative ring and M is a finitely generated A-module, then M is a
noetherian A-module.

Proof of Prop. 3. Because M is finitely generated, we have M = Ax1 + · · ·+Axn for some xi ∈M .
Then we have a surjection An →M , defined by mapping (a1, . . . , an) to a1x1 + · · ·+ anxn. Letting
N = ker(h), we then have An/N ∼= M . An easy induction argument shows that An is a noetherian
A-module for any n (note that An/(An−1 ⊕ 0) ∼= A). Thus, using Proposition 2, M ∼= An/N is
noetherian.

Now let’s prove Proposition 1 from last time, i.e. that given a ring B and a subring A, the integral
closure of A in B is a subring of B.

Proof. First, let’s do the case that A is noetherian. Assume that x, y ∈ B are integral over
A. Then A[x, y] is finitely generated as an A-module, because xn + a1x

n−1 + · · · + an = 0 and
ym + c1y

m−1 + · · ·+ cm = 0 implies that A[x, y] is generated by xiyj for 0 ≤ i < n and 0 ≤ j < m.

Clearly, x+ y, xy ∈ A[x, y]. Equivalently, we know that A[x+ y] ⊂ A[x, y] and A[xy] ⊂ A[x, y]. By
Proposition 3, A[x, y] is a noetherian A-module, so both A[x+ y] and A[xy] are finitely generated
as A-modules, and therefore x+ y and xy are integral over A by Proposition 1.

Now let’s do the general case. Any ring A whatsoever is a union of subrings of A each of which is
finitely generated over Z. This is clear because any finite subset {a1, . . . , an} of A is contained in a
subring of A which is finitely generated over Z, specifically, φ(Z)[a1, . . . , an] where φ : Z → A is the
unique ring homomorphism (specifically φ(n) = n · 1).

Thus, if x, y ∈ B are integral over A, say xn+a1x
n−1 + · · ·+an = 0 and ym+ c1y

m−1 + · · ·+ cm = 0
for some ai, ci ∈ A, then not only are x and y integral over A, they are integral over the subring
A′ = φ(A)[a1, . . . , an, c1, . . . , cm] of A. Because A′ is finitely generated over Z, it is noetherian. By
the noetherian case, we have that x+ y and xy are integral over A′, and therefore they are clearly
also integral over A.
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Lecture 4 (2013-01-14)

Accomplishments in algebraic number theory in the 19th century

In the middle of the 19th century, Kummer started the theory of ideals.

Two motivations of Kummer:

1. He hoped to prove Fermat’s Last Theorem.

2. He hoped to make progress in class field theory.

Fermat (1601-1665) is the father of modern number theory. As you should all be familiar, he stated
Fermat’s Last Theorem, that there are no integer solutions to

xn + yn = zn

when n ≥ 3 and xyz 6= 0. It was written in the margin’s of Diophantus’ Arithmetica, which was
written in the 3rd century.

He also wrote other things in the margins; for example, he claimed that any non-negative integer
could be written as a sum of four squares, i.e. that for any n ≥ 0, there exist some x, y, z, u ∈ Z
such that

n = x2 + y2 + z2 + u2.

However, it took people about 100 years to prove this.

Fermat did give a proof of Fermat’s Last Theorem for n = 4. 100 years after that, Euler gave a
proof for the case n = 3. Prior to Kummer, the cases n = 5 and n = 7 were also known.

Fermat’s Last Theorem can be reduced to the cases n = 4 and n = a prime, because (for example)
we can re-express

x6 + y6 = z6 =⇒ (x2)3 + (y2)3 = (z2)3.

Theorem (Kummer). Assume that n is an odd prime number. If the class number of Q(ζn) is not
divisible by n, then Fermat’s Last Theorem is true for n.

The only prime numbers less than 100 which do not have this property (i.e. the class number is
divisible) are n = 37, 59, 67.

The class number is the order of the group of classes of fractional ideals.

Kummer could prove Fermat’s Last Theorem if the ring Z[ζn] had unique factorization into
irreducibles (note that Z[ζn] = OK where K = Q(ζn)), because we can re-express Fermat’s Last
Theorem as a multiplicative statement in this ring:

xn = zn − yn =
n−1∏
i=0

(z − ζiny).

The class number measures how badly unique factorization fails.
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Let Us Share the Feelings of Kummer

Kummer was very happy when he proved that

n - class number of Q(ζn) =⇒ FLT for n is true.

But Kummer was not happy that he could not treat the case that n | class number.

As an example of this technique, we can prove that

x3 = y2 + 4 for x, y ∈ Z =⇒ (x, y) = (5,±11) or (2,±2)

by using unique factorization in Z[i].

We are very happy to prove that

x3 = y2 + 20 =⇒ (x, y) = (6,±14)

by using the fact that 3 - the class number of Q(
√
−5) (which is 2); the problem can be re-expressed

as
x3 = (y + 2

√
−5)(y − 2

√
−5).

However, we are not happy that we have difficulty for x3 = y2 + 26, because 3 | the class number of
Q(
√
−26) (which is 6). Note that

33 = (1 +
√
−26)(1−

√
−26),

so that in the world of ideals,
(3) = pp′

where p and p′ are prime ideals such that p3 = (1 +
√
−26) and (p′)3 = (1−

√
−26).

Let q = (2,
√
−26), which is a prime ideal with q2 = (2). The the class group of Q(

√
−26) consists

of the ideal classes

{1, class(p), class(p2), class(q), class(qp), class(qp2) } ∼= Z/2Z× Z/3Z ∼= Z/6Z.

In the class group, we have class(p)3 = 1.

Going back to the problem x3 = y2 + 4, we can re-express it as

x3 = (y + 2i)(y − 2i).

For any prime element π ∈ Z[i], if π | y + 2i, we have π | x3, and therefore π | x.

If π | y + 2i and π | y − 2i, then π | (y + 2i)− (y − 2i) = 4i, so π | 2, so that (π) = (1 + i).

For an α ∈ Z[i] \ {0}, define

ordπ(α) = the exponent e such that πe | α, πe+1 - α

where π is a prime element of Z[i]. Then if π | y + 2i,

ordπ(y + 2i) = 3 ordπ(x) if (π) 6= (1 + i),

which implies that 3 | ordπ(y + 2i). If (π) = (1 + i), then

ordπ(y + 2i) = ordπ(y − 2i)

since y − 2i = y + 2i, so that
2 ordπ(y + 2i) = 3 ordπ(x),

and therefore 3 | ordπ(y + 2i). Thus, we have shown that 3 | ordπ(y + 2i) for all prime divisors π of
y + 2i. Thus y + 2i = α3 for some α ∈ Z[i]. We’ll finish this next time.
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Lecture 5 (2013-01-16)

We claim that the only solutions x, y ∈ Z to the equation x3 = y2 + 4 are (x, y) = (2,±2) and
(x, y) = (5,±11).

As we did last time, we factor the left side in Z[i] (which is a UFD):

x3 = (y + 2i)(y − 2i).

We then obtained last time that this implies (y + 2i) = α3 for some α ∈ Z[i]. If α = a+ bi, then

y + 2i = (a+ bi)3

= (a3 − 3ab2) + (3ab2 − b3)i

and therefore

y = a3 − 3ab2

2 = 3a2b− b3 = (3a2 − b2)b

The second of these equations forces that b ∈ {1,−1, 2,−2}.

b = 1 =⇒ 3a2 − 1 = 2 =⇒ a = ±1 =⇒ y = ∓2

b = −1 =⇒ 3a2 − 1 = −2 (not OK)

b = 2 =⇒ 3a2 − 4 = 1 (not OK)

b = −2 =⇒ 3a2 − 4 = −1 =⇒ a = ±1 =⇒ y = ∓11

Now let’s go back to proving that the integral solutions to x3 = y2 + 20 are (x, y) = (6,±14).

Factoring the equation in Z[
√
−5], we get

x3 = (y + 2
√
−5)(y − 2

√
−5).

As before, this impies that there is an α ∈ Z[
√
−5] such that y + 2

√
−5 = α. If α = a+ b

√
−5, then

we obtain that

y = a3 − 3× 5ab2

2 = 3a2b− 5b3 = (3a2 − 5b2)b

Again, we break into cases for each possibility b ∈ {1,−1, 2,−2}, and can conclude the result.

Let K = Q(
√
−5). Then OK = Z[

√
−5] is not a UFD, because

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

The beautiful world of ideals exists behind the ugly world of numbers.

In the world of ideals, this is fixed, because

(2) = p2, (3) = qq′, (1 +
√
−5) = pq, (1−

√
−5) = pq′

where

p = (2, 1 +
√
−5) = (2, 1−

√
−5), q = (3, 1 +

√
−5), q′ = (3, 1−

√
−5).
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For a maximal ideal p of Z[
√
−5] and β ∈ Z[

√
−5], recall that ordp(β) = e for that integer e for

which (β) = peI for some ideal I, but for which there is no ideal I such that (β) = pe+1I.

Considering the equation x3 = (y + 2
√
−5)(y − 2

√
−5), we can conclude that ordp(y + 2

√
−5) for

every maximal ideal p of Z[
√
−5]. This is because if y + 2

√
−5 ∈ p and y − 2

√
−5 /∈ p, then

3 ordp(x) = ordp(x
3) = ordp(y + 2i),

and if y+2
√
−5 ∈ p and y−2

√
−5 ∈ p, then 4

√
−5 ∈ p, which implies that either p = (2, 1+

√
−5) =

(2, 1−
√
−5), or p = (

√
−5) = (−

√
−5). Thus, we have obtained that (y + 2

√
−5) = I3 for some

non-zero ideal I of Z[
√
−5]. Because the class number of Q(

√
−5) is 2 and class(I)3 = 1, we can

conclude that class(I) = 1, because the order of class(I) is either 1 or 2.

Therefore there is a principal ideal I = (α) such that (y+ 2
√
−5) = I3, so that y+ 2

√
−5 = unit ·α3.

The units of Z[
√
−5] are just {±1}, so y + 2

√
−5 = ±α3 = (±α)3.

This method does not work for solving x3 = y2 + 26, because Q(
√
−26) has class number 6, which

is divisible by 3. Thus, we get everything up to the conclusion that (y +
√
−26) = I3 for some ideal

I, but we do not then obtain that y +
√
−26 = α3 for some element α. For example, (x, y) = (3, 1)

is a solution, so
33 = (1 +

√
−26)(1−

√
−26),

but 1 +
√
−26 is not a cube, i.e. 1 +

√
−26 6= α3 for any α ∈ Z[

√
−26]. However, (1 +

√
−26) = p3

where p = (3, 1 +
√
−26).

Three big theorems in algebraic number theory in the 19th century

Let K be a number field.

1. Unique factorization in the world of ideals

If I is a non-zero ideal of OK , then I = pe11 · · · perr in a unique way, where the pi are
maximal ideals of OK .

2. Finiteness of class number

The ideal class group of K is finite.

3. Dirichlet’s unit theorem

The unit group (OK)× is isomorphic to

Zr1+r2−1 ⊕ Z/wKZ

where wK is the number of roots of unity in K, r1 is the number of distinct
embeddings K ↪→ R, and r2 is (one half of) the number of distinct embeddings
K ↪→ C whose image is not R. Note that

r1 + 2r2 = #{K ↪→ C} = [K : Q].

Let’s look at some examples of Dirichlet’s unit theorem.

If K = Q(i), then there are no embeddings of K into R, and two embeddings of K into C (via i 7→ i
and i 7→ −i), so r1 = 0 and r2 = 1, and

Z[i]× = {±1,±i} ∼= Z/4Z.
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If K = Q(
√

2), then r1 = 2 and r2 = 0, and

Z[
√

2]× = {±(1 +
√

2)n | n ∈ Z} ∼= Z⊕ Z/2Z.

If K = Q( 3
√

2), then r1 = 1, r2 = 1, and

Z[
3
√

2]× = {±(1− 3
√

2)n | n ∈ Z} ∼= Z× Z/2Z.

The finiteness of class number tells us that the difference between the world of ideals and the world
of numbers is finite in some sense.

Recall that Kummer wanted to approach Fermat’s Last Theorem by

xn = yn − zn

=

n∏
a=1

(z − ζany)

Kummer wanted to be able to say that

(z − ζany) = In =⇒ (z − ζany) = (αn)

for some α, which we’ve seen that we can do when the class number of Q(ζn) is prime to n. However,
the next step requires us to understand the unit group because

(z − ζany) = (αn) =⇒ z − ζany = uαn

for a unit u.
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Lecture 6 (2013-01-18)

There will be no class next Monday.

The first introduction to Dedekind domains

An example of a Dedekind domain is OK for any number field K.

Definition. An integral domain A is called a Dedekind domain precisely when

• A is noetherian,

• A is normal (i.e. integrally closed), and

• any non-zero prime ideal of A is a maximal ideal.

Let A be an integral domain, and let K be the field of fractions of A.

Definition. A fractional ideal of A is an A-submodule I ⊂ K such that aI ⊆ A for some a ∈ A\{0}.

For any non-zero ideal I ⊆ A, the set

I−1 := {a ∈ K | aI ⊆ A}

is a fractional ideal of A.

Theorem (Noether). For an integral domain A, the following conditions are equivalent:

(i) A is a Dedekind domain.

(ii) II−1 = A for any non-zero ideal I ⊆ A.

(iii) The non-zero fractional ideals of A form a group for the multiplication

IJ = {
∑n

i=1 xiyj | n ≥ 0, xi ∈ I, yj ∈ J}.

(iv) Any non-zero ideal of A is a finite product of maximal ideals of A.

(v) Any non-zero ideal of A can be expressed as a finite product of maximal ideals of A.

(vi) All local rings of A are PIDs (this will be explained later).

Lemma. Given a non-zero ideal I ⊆ A, then II−1 = A implies that I is finitely generated.

Proof. If II−1 = A, then there are some ai ∈ I and bi ∈ I−1 such that
∑n

i=1 aibi = 1.

We claim that the ai generate I. Let x ∈ I. Then

x = x
n∑
i=1

aibi =
n∑
i=1

ai xbi︸︷︷︸
∈A

.

Theorem. Given a Dedekind domain A, let K be its fraction field, let L be any finite extension of
K, and let B be the integral closure of A in L. Then B is a Dedekind domain.

Remark. We don’t need to assume that L/K is separable.

Corollary. For any number field K, the ring of integers OK (which is the integral closure of Z in
K) is a Dedekind domain.
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PID Dedekind domain

UFD normal integral domain

The ring k[T1, . . . , Tn] for n ≥ 2 is a UFD, but not a Dedekind domain, because there are non-zero,
non-maximal prime ideals. The ring Z[

√
−26] is a Dedekind domain, but not a UFD.

Given a Dedekind domain A, we have that A is a UFD ⇐⇒ A is a PID.

‘‘Dedekind domain’’ is a good notion. A PID is just a simple-minded Dedekind domain.

Alternatively, you may think ‘‘PID’’ is a good notion, and that a Dedekind domain is a sick PID.

Z[
√

5] is not a Dedekind domain, because if I = (2, 1 +
√

5), then

I2 = (2, 1 +
√

5)(2, 1 +
√

5) = (4, 2(1 +
√

5), (1 +
√

5)2) = (2)(2, 1 +
√

5) = (2)I.

This problem is fixed in Z[1+
√

5
2 ], because (2, 1 +

√
5) = (2).
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Lecture 7 (2013-01-23)

Ideal class groups

Let A be a Dedekind domain, and let K be its field of fractions. Then the non-zero fractional ideals
(which we defined earlier) form a group under multiplication. There’s no standard notation for this
group, but we’ll denote it by IA.

The non-zero principal fractional ideals, i.e the ones of the form (a) = aA for some a ∈ K×, form a
subgroup of I(A), which we will denote by P (A).

Definition. The class group Cl(A) of A is defined to be I(A)/P (A).

If A = OK where K is a number field, then the class number of K is defined to be #Cl(A). The
class number is finite for any number field K.

Note that there is a homomorphism θ : K× → I(A) defined by taking a to (a), and that

ker(θ) = A×, coker(θ) = Cl(A).

These two groups are the most important in number theory. When we understand these, then we
are doing well.

Remark. We can identify

Cl(A)←→
{

isomorphism classes of non-zero
ideals of A as A-modules

}

The class group is a bitter group and a sweet group. It is bitter because when it is non-trivial it
makes a mess. It is sweet because it makes things interesting.

a bitter group a sweet group

There is a cake shop in Balmont, which is north of Chicago. The class group is the same as this
cake shop; it is a very nice cake shop.

Class groups have mysterious relations with values of zeta functions. In the 19th century, the class
number formula was discovered, which connects zeta functions with both the class number and the
unit group. Thus, zeta functions are related to two of the most important groups in number theory.

Another result of the 19th century:

Theorem (Kummer’s criterion). Let p be a prime number. The class number of Q(ζp) is divisible

by p if and only if, for some even integer 2 ≤ r ≤ p− 3, the numerator of ζ(r)
πr ∈ Q is divisible by p.

Recall that ζ(s) =
∑∞

n=1
1
ns . Then Euler proved in 1735 that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
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and in general, he proved that for any n ≥ 1,

ζ(2n) = (−1)n+1B2n(2π)2n

2 · (2n)!
∈ Qπ2n,

where the B2n is the 2nth Bernoulli number. The Bernoulli numbers are defined by

t

et − 1
=

∞∑
m=0

Bm
m!

tm.

It turns out that the numerator of ζ(r)
πr is 1 for r = 2, 4, 6, 8, 10. However,

ζ(12)

π12
=

691

34 · 53 · 72 · 11 · 13
.

The primes p such that the class number of Q(ζp) is divisible by p are

37, 59, 67, 101, 103, 131, . . . , 691, . . .

In the 20th century, people discovered deeper relations between zeta functions and arithmetic groups
like the ideal class group (there were also many more zeta functions to think about). For example,
Iwasawa theory was developed, and there is the conjecture of Beilinson.

Recall that Kummer’s two motivations were

• Hope to prove Fermat’s last theorem

• Hope to have progress on ‘‘generalized reciprocity law’’ (we now call this class field theory)

A great stream in number theory

In the 1630’s, Fermat proved for an odd prime p, that p = x2 + y2 for some x and y if and only if
p ≡ 1 mod 4. For example,

5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12, 89 = 82 + 52

In 1796, Gauss proved the quadratic reciprocity law.

In the 19th century, Kummer and others proved the generalized reciprocity law.

Takagi, my advisor’s advisor, and Artin in the 1920’s worked on class field theory.

From 1965 forward, Langlands worked on Langland’s conjectures (non-commutative version of class
field theory).

In 1994, Wiles made big progress on the Langland’s conjectures, and proved Fermat’s last theorem.

Two motivations of Wiles were

• Hope to prove Fermat’s last theorem

• Hope to have progress on Langlands conjectures

Last edited
2013-08-09

Math 326 - Algebra 2 Page 17
Lecture 7



Fermat’s last theorem has clearly given a lot of energy to mathematicians. In contrast, if Fermat
had talked about

x10 + xy + 6345 = zy! + yz

nobody would have cared.

Recall that p = x2 + y2 implies that p = (x+ yi)(x− yi) in Z[i].

Kummer generlized this by proving that p decomposes ‘‘completely’’ in Z[ζn] (into φ(n) distinct
primes) if and only if p ≡ 1 mod n.
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Lecture 8 (2013-01-25)

Introduction to class field theory and Langlands correspondence

Fermat → Gauss → · · ·

Gauss proved the quadratic reciprocity law in 1796.

For p an odd prime number and a ∈ Z, p - a, the Legendre symbol
(
a
p

)
is defined by(

a

p

)
=

{
1 if a mod p has a square root in Fp,
−1 otherwise.

We have (
ab

p

)
=

(
a

p

)(
b

p

)
because F×p is a cyclic group of order p− 1.

When we fix p and let a vary, it is easy to understand:(
a

5

)
=

{
1 if a ≡ 1, 4 mod 5,

−1 if a ≡ 2, 3 mod 5.

This is because 1 = 12, 4 = 22 in F5, but 2 and 3 are not squares.

But if we fix a and let p vary, it seems like this would be very hard to understand:(
5

p

)
=?

How can we figure out when Fp has a solution to x2 = 5?

(The case of x3 = 5 is harder; this is a case where we need Langlands correspondence.)

Quadratic Reciprocity Law

Complementary Laws:

I:

(
−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

II:

(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ 1, 7 mod 8,

−1 if p ≡ 3, 5 mod 8.

Love song in the land of prime numbers:(
q

p

)
=

(
p

q

)
· (−1)

p−1
2

q−1
2

for distinct odd prime numbers p and q.( q
p

)
is how the girl q is reflected in the heart of the boy p, and

(p
q

)
is how the boy is reflected in the

heart of the girl q. As you may some experience with, these are sometimes not related in our world.
But in the world of prime numbers, they are related - this is very mysterious.
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We can relate the quadratic reciprocity law as(
m

p

)
= χ(p)

where m ∈ Z, m is squarefreee. Let

N =

{
|m| if m ≡ 1 mod 4,

4|m| otherwise.

There is a unique homomorphism χ : (Z/NZ)× → {±1} such that

(i) χ(−1) =

{
1 if m > 0,

−1 if m < 0
, and

(ii) χ does not factor as

(Z/NZ)× {±1}

(Z/N ′Z)×

for any proper divisor N ′ of N .

When m = 2, we have N = 8, and χ : (Z/8Z)× → {±1} sends 1 and 7 to 1, and 3 and 5 to −1.
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What happens in finite fields How primes decompose Class field theory

Quadratic reciprocity
(Gauss, 1796)

x2 = m has a solution in Fp
p - m, p 6= 2

pOK = p1p2 for distinct
pi ⊂ OK , where K = Q(

√
m)

χ(p) = 1, where χ is as above

Generalized reciprocity

(Kummer, 19th century)
xn = 1 has n solutions in Fp

p - n
pOK = p1 · · · pr in OK = Z[ζn],
where r = ϕ(n) = [Q(ζn) : Q]

χ(p) = 1 for all χ : (Z/nZ)× → C×
(⇐⇒ p ≡ 1 mod n)

Class field theory
(Tagaki, Artin)

p a maximal ideal of Z[ζ3];
x3 = 2 has a solution in Z[ζ3]/p

pOL = P1P2P3 for distinct

Pi ⊂ OL, where L = Q( 3
√

2, ζ3)

exists α ∈ Z[ζ3] with p = (α),
α ≡ 1 mod 6
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For example, in Z[ζ3] we have
31 = (1 + 6ζ3)(1 + 6ζ2

3 )

and each factor is prime in Z[ζ3], and in OL we have

1 + 6ζa3 = −
2∏
b=0

(1− ζa3 + ζb3
3
√

2)

for each a = 1, 2.

Here is another example. Let p be an odd prime and m squarefree, p - m. Let K = Q(
√
m). We have

OK/pOK ∼= Z[
√
m]/pZ[

√
m]

because p 6= 2. Note that this is isomorphic to

Z[
√
m]/pZ[

√
m] ∼= Z[T ]/(T 2 −m, p) ∼= Fp[T ]/(T 2 −m).

If
(
m
p

)
= −1, then Fp[T ]/(T 2 −m) is a field and (p) is maximal.

If
(
m
p

)
= 1, then Fp[T ]/(T 2−m) ∼= Fp[T ]/(T−a)(T−b) ∼= Fp×Fp, and (p) = (p, a−

√
m)(p, b−

√
m).

I saw a book that said class field theory was the greatest theory in number theory, and I misunderstood
and thought that number theorists only studied stupid things now, because the greatest theory was
already completed. But this was my misunderstanding.
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Lecture 9 (2013-01-28)

Today I complete my story about number theory and next class we will return to commutative
algebra.

Last time, we discussed the following extensions:

Q(
√
m)/Q, Q(ζn)/Q, Q(

3
√

2, ζ3)/Q(ζ3).

Given number fields L ⊇ K, how does each maximal ideal p of OK decompose in OL?

OLp = Pe1
1 · · ·P

eg
g

(When at least one of the ei’s is > 1, we say that p ramifies.)

How the maximal ideal p decomposes is related to what happens modulo p. This relationship is
captured by class field theory. However, class field theory only applies to abelian extensions (all
of the ones mentioned above are abelian). Around 1965, Langlands realized the philosophy that
modular forms could be used to study non-abelian extensions.

Let p be a prime number. Then

xn = 1 has n solutions in Fp ⇐⇒ p ≡ 1 mod n ⇐⇒ (p) decomposes completely in Z[ζn].

This is provable using basic ring theory; we know that F×p is cyclic of order p− 1, so

#{x ∈ F×p | xn = 1} = n ⇐⇒ n | #(F×p ) ⇐⇒ p ≡ 1 mod n.

Note that there is an isomorphism Z[T ]/(Φn(T )) ∼= Z[ζn] where Φn(T ) is the nth cyclotomic
polynomial

Φn =
∏

a∈(Z/nZ)×

(T − ζan) ∈ Z[T ].

Thus, we have Z[ζn]/(p) ∼= Z[T ]/(p,Φn(T )). Note that Φn(T ) | Tn − 1. Also note that r =
#(Z/nZ)× = ϕ(n), where r = deg(Φn(T )). If we assume that Fp has n solutions to xn = 1, then

Z[ζn]/(p) ∼= Z[T ]/(p,Φn(T ))
∼= Fp[T ]/(Φn(T ))
∼= Fp[T ]/((T − a1) · · · (T − ar))
∼= Fp[T ]/(T − a1)× · · · × Fp[T ]/(T − ar)
= Fp × · · · × Fp

Thus, the maximal ideals of Z[ζn] which contain p are of the form

(p, ζn − a1), · · · , (p, ζn − ar).

Using the fact that I1 ∩ · · · ∩ Ik = I1 · · · Ik for coprime ideals I1, . . . , Ik, we can see that

(p) =

r∏
i=1

(p, ζn − ai) =
∏

c∈(Z/nZ)×

(p, ai − ζcn).

Let’s consider the non-abelian extension L = Q( 3
√

2, ζ3) of Q (the Galois group is isomorphic to S3).
Let p be a prime, p 6= 2, 3. There are three possibilities:
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(1) x3 = 2 has three solutions in Fp

(2) x3 = 2 has one solution in Fp

(3) x3 = 2 has no solutions in Fp

By a similar argument,

(1) ⇐⇒ (p) decomposes into a product of 6 distinct maximal ideals of OL

(2) ⇐⇒ (p) decomposes into a product of 3 distinct maximal ideals of OL

(3) ⇐⇒ (p) decomposes into a product of 2 distinct maximal ideals of OL

The Langlands correspondence tells us that

(1) ⇐⇒ ap = 2

(2) ⇐⇒ ap = 0

(3) ⇐⇒ ap = −1

where the numbers ap are defined as follows, via the Dedekind eta function

η(z) = q1/24
∞∏
n=1

(1− qn) q = e2πiz

(this converges when Im(z) > 0 i.e. |q| < 1). We can write η(6z)η(18z) as a power series

η(6z)η(18z) = q
∞∏
n=1

(1− q6n)
∞∏
n=1

(1− q18n) =
∞∑
n=1

anq
n,

which is a modular form of weight 1 in Γ1(108). Expanding, we see that

η(6z)η(18z) = q − q7 − q13 + q19 + q25 + 2q31 − q39 + 2q43 + · · ·

For each prime p, we have ap ∈ {2, 0,−1}, and (for example)

a31 = 2 =⇒ (31) decomposes into 6 maximal ideals

a5 = 0 =⇒ (5) decomposes into 3 maximal ideals

a7 = −1 =⇒ (7) decomposes into 2 maximal ideals

Explicitly,

(31) =

2∏
a=1

2∏
b=0

(1− ζa3 +
3
√

2ζb3).

Compare the following statements:

• in Q(
√
m)/Q, p decomposes into two ⇐⇒ χ(p) = 1, i.e. 1− χ(p)u = 1− u

• in Q( 3
√

2, ζ3)/Q, p decomposes into six ⇐⇒ ap = 2, i.e. 1− apu+ u2 = (1− u)2

Let E denote the elliptic curve y2 = x3 + 1. We define

Np = #E(Fp) = #{(x, y) ∈ Fp × Fp | y2 = x3 + 1}+ 1︸︷︷︸
point at
infinity
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The set of solutions, together with the point at infinity, form an abelian group.

Let p 6= 2, 3. Then
Np = p+ 1− ap

where ap is defined by expanding the following as a power series:

η(6z)4 = q
∞∏
n=1

(1− q6n)4 =
∞∑
n=1

anq
n.

This is a modular form of weight 2. The first few terms are

q − 4q7 + · · ·

and we correspondingly have N5 = 6 and N7 = 12.
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Lecture 10 (2013-01-30)

There is still a bit more to say about number theory before we get back to algebra.

On June 23, 1993, Wiles attended a conference in England where he gave three talks. There were
rumors, so people knew that something was going to be special, and on the third day he announced
his proof. I was one of the organizers of the conference, but I was in Japan at the time.

There were t-shirts made for the occasion,

In 1637. . .

I’ve received several letters where people who were not professionals claimed to have proven Fermat’s
Last Theorem. They were all making trivial manipulations until they made a mistake, and thought
they had reached a contradiction.

There is a myth of Lorelei, a maiden who lived on a rock in the Rhine river who would distract
fishermen with her song so they forgot to control their boat, and they ended up on the bottom of
the river. Many people spent their lives in vain trying to prove Fermat’s Last Theorem.

Last time, I didn’t mention what happens in the number field situation for elliptic curves, only
what happens modulo p.

An elliptic curve E/Q is a curve of the form y2 = f(x) where f(x) ∈ Q[x] is of degree 3, and has no
multiple roots.

The set E(K) = {(x, y) ∈ K ×K | y2 = f(x)} ∪ {O} is a group under the operation + defined by
setting P +Q+R = O when P , Q, and R are collinear:

P

Q

R

(special cases are needed when the line is tangent to the curve, or is vertical.)

On E : y2 = x3 + 1, we have that E[6] (the 6-torsion of E) is isomorphic to Z/6Z, consisting of
{O,P, 2P, 3P, 4P, 5P} where P = (2, 3):
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P

2P

3P

4P

5P

y2 = x3 + 1

Viewed on the projective plane, you can think of this as simply being

O

P2P

3P

4P 5P

For a natural number n, we define

E[n] := {(x, y) ∈ E(Q) | n · (x, y) = O} ∼= (Z/nZ)2.

This has a natural action of Gal(Q/Q) on it. There is then a number field Q(E[n]), where we adjoin
the x- and y-coordinates of each of the points in E[n] to Q.

Gal(Q/Q) GL(2,Z/nZ)

Gal(Q(E[n])/Q)

Let p be an odd prime number.

Frey’s elliptic curve takes a hypothetical counterexample to Fermat’s Last Theorem, ab + bp = cp,
and is defined by y2 = x(x− ap)(x− bp). Note that this is of the form

(x−A)(x−B)(x− C)

where A−B, B−C, and A−C are all pth powers. This implies that the ramification in Q(E[p])/Q
is very, very small.

The Taniyama-Shimura conjecture gives a correspondence between elliptic curves and modular
forms,

E ←→ f =

∞∑
n=1

anq
n
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where ap = 1 + p−#E(Fp) for almost all p. This is a special case of the Langlands correspondence.
Wiles proved a large part of this conjecture.

The property that A−B, B −C, and C −A are all pth powers implies that f mod p has level ≤ 2,
but the correspondence in the Taniyama-Shimura conjecture implies that such an f does not exist.
This establishes Fermat’s Last Theorem.

The correspondence between E’s and f ’s is something like the quadratic reciprocity law. The
correspondence between y2 = x3 + · · · and a modular form f is like the correspondence between
x2 = −1 and χ : (Z/4Z)× → {±1} with χ(1) = 1, χ(3) = −1.

Two comments:

1. χ : (Z/nZ)× → C× is a modular form of GL(1,Q), f = η(6z)η(18z) is a modular form of
GL(2,Q), etc.

2. The Kronecker-Weber theorem says that any finite abelian extension K of Q is contained in
some cyclotomic field Q(ζn).

Gal(Q(ζn)/Q) (Z/nZ)×

Gal(Q(
√
m)/Q) {±1}

∼=

restriction χ

∼=

Let p be a prime, and assume p - n. Then p decomposes in OK completely if and only if
p mod N ∈ H ⊂ (Z/nZ)×, where H is the subgroup of (Z/nZ)× corresponding to K in the
Galois theory correspondence.

Hilbert had a rough idea of class field theory at the end of the 19th century. Takagi was very lucky
to be able to study under him, not many people in Japan were able to go to Europe at the time.
When he came back, the people of Takagi’s village threw a festival, because a great person had
returned.

Takagi’s thesis under Hilbert established the following result. If K/Q(i) is a finite abelian extension,
thenK is contained in a field of the form Q(i)(E[n]) where E : y2 = x3−x. Note that (x, y) 7→ (−x, iy)
is an automorphism of E corresponding to multiplication by i. This is a special case of Kronecker’s
dream-of-youth (Jugendtraum).

Hilbert conjectured that for any number field K, there was a special number field L containing
K such that p ⊂ OK decomposes completely in OL if and only if p is principal. For example, if
K = Q(

√
−5), then L = Q(

√
−5, i). In this extension, any maximal ideal is unramified, p splits if

and only if p is principal, and p remains prime if and only if p is not principal.
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Lecture 11 (2013-02-01)

Localization, and introduction to algebraic geometry

The spaces Spec(A) and max(A)

For a commutative ring A, we define

Spec(A) = {prime ideals of A}
max(A) = {maximal ideals of A}

Recall that an ideal p ⊂ A is prime when p 6= A, and if ab ∈ p implies that a ∈ p or b ∈ p.
Equivalently, p is prime when A/p is an integral domain. To have A/p a field is equivalent to p
being maximal.

For example, Spec(Z) = max(Z) ∪ {(0)}.

To have a good understanding of commutative ring theory, it is nice to think that Spec(A) and
max(A) are very nice spaces, and we think of A as the ring of functions on these spaces. In number
theory, our rings are not really rings of functions; we can’t take the derivative of an integer for
example. But the analogy is still useful.

Theorem 1. If k is an algebraically closed field, then max(k[T1, . . . , Tn]) is in bijection with kn:

(T1 − a1, . . . , Tn − an)︸ ︷︷ ︸
= {f ∈ k[T1, . . . , Tn] | f(a1, . . . , an) = 0}

←→ (a1, . . . , an).

Theorem 2. Let A be a finitely generated ring over a field k (respectively, over Z), and let m be a
maximal ideal of A. Then A/m is a finite extension of k (respectively, of a finite field).

We can see that Theorem 2 implies Theorem 1, because any finite extension of an algebraically closed

field k must be k itself, so for any maximal ideal m of k[T1, . . . , Tn], we have k[T1, . . . , Tn]/m
∼=−−→ k,

and if Ti 7→ ai, we have Ti − ai ∈ m for all i, and hence m = (T1 − a1, . . . , Tn − an).

For the proof of Theorem 2, we use the following two propositions.

Proposition 1. Let K be a finitely generated field over a field k. Then there is an isomorphism of
k-algebras between K and a finite extension of k(T1, . . . , Tn) for some n ≥ 0, where the Ti’s are
indeterminates.

(We won’t prove Proposition 1.)

Proposition 2. Let B be a commutative ring, and A a subring of B. Assume that B is integral
over A. Then B is a field =⇒ A is a field.

Proof of Proposition 2. Let a ∈ A be any non-zero element. Then 1
a ∈ B because B is a field.

Because 1
a is integral over A, there is some n ≥ 1 and ci ∈ A such that(

1

a

)n
+ c1

(
1

a

)n−1

+ · · ·+ cn = 0.

Thus
1

a
= −(c1 + c2a+ · · ·+ cna

n−1) ∈ A.
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Proof of Theorem 2. Note that it will suffice to prove the theorem in the case that A is a field. In
other words, we want to prove that if K is a field that is finitely generated over k (respectively,
over Z), then K is a finite extension of k (respectively, that K is a finite field).

First, let’s do the case over k. By Proposition 1, we have that K is a finite extension of k(T1, . . . , Tn).
We want to prove that n = 0.

There exist some b1, . . . , bm ∈ K such that K is finitely generated by b1, . . . , bm as a ring over k.

We have b
n(i)
i + ci1b

n(i)−1
i + · · ·+ cin(i) = 0 for each i and some cij =

fij
gij
∈ k(T1, . . . , Tn). Let g be

the product of all the gi. Thus cij ∈ k[T1, . . . , Tn,
1
g ] for all i, j, and therefore the elements bi are

all integral over k[T1, . . . , Tn,
1
g ]. Hence all the elements of K are integral over k[T1, . . . , Tn,

1
g ]. By

Proposition 2, this implies k[T1, . . . , Tn,
1
g ] is a field; but this is possible only when n = 0.

Now we do the case over Z. The kernel of Z→ K is a prime ideal, so it is either (0) or (p) for a
prime number p. If it is (p), then we have that K is a field over Fp,

Z K

Fp

If it is (0), we have

Z K

Q

so that K is a finite extension of Q(T1, . . . , Tn) for some n ≥ 0. In a similar way, we have that K
is integral over Z[T1, . . . , Tn,

1
g ] for some g ∈ Z[T1, . . . , Tn], so Z[T1, . . . , Tn,

1
g ] is a field; but this is

impossible unless n = 0.

Hasse zeta function

Let A be a finitely generated commutative ring over Z. We define

ζA(s) =
∏

m∈max(A)

1

1− 1
#(A/m)

,

which makes sense because A/m is a finite field by Theorem 2.

The famous Riemann zeta function is just

ζZ(s) =
∏

p prime

1

1− 1
ps

=

∞∑
n=1

1

ns
.

Hasse conjectured that ζA(s) has an analytic continuation to all of C as a meromorphic function.

We have
ζZ[i](s) = ζ(s)L(s, χ),

where χ is a modular form for GL(1,Q).
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If A is finitely generated over Fp, then ζA(s) is a rational function in 1
ps ; for example,

ζFp[T ](s) =
1

1− p · 1
ps
.

If A is an integral domain and Z ⊆ A, we expect that

ζA(s) =

∏
L(s, fi)∏
L(s, gj)

where the fi, gj are modular forms for GL(n,Q).
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Lecture 12 (2013-02-04)

I have some comments to add about the Hasse zeta function. Recall that the definition is

ζA(s) =
∏

m∈max(A)

1

1−#(A/m)−s

where A is a finitely generated ring over Z. I mentioned the conjecture of Hasse,

Conjecture 1. There is a meromorphic continuation of ζA to all of C.

But I forgot to mention the generalization of Riemann’s hypothesis:

Conjecture 2. The zeros and poles of ζA(s) satisfy Re(s) ∈ 1
2Z.

Remark. When A = OK for a number field K, the function ζA(s) is called the Dedekind zeta
function of K. For this case, Conjecture 1 was proved a long time ago; Conjecture 2 is not known.

When A is over a finite field Fq, Conjecture 1 was proved by Dwork, and then later in a deeper
way by Grothendieck (in this case, they were proving that ζA(s) is a rational function in q−s).
Conjecture 2 was proved by Deligne in 1973.

Conjecture (Weil conjectures, 1949). Let A be a ring over Fq, i.e. a ring that is a friend of Fq[x]
like Fq[x, y]/(y2 − x3 − x− 1).

• ζA(s) is a rational function in q−s

• Conjecture 2

• ζA(s) tells us the shape of A = Fq[T1, . . . , Tn]/(f1, . . . , fm), or rather the shape of the algebraic
variety

{x = (x1, . . . , xn) | f1(x) = · · · = fm(x) = 0}.

Over Fq, this does not have a shape - we can’t draw it. But we can think it is over C, and
then we can see the shape.

Great encounters in history

• Young algebraic geometry met Riemann’s hypothesis.

• Young Dante met Beatrice.

If A is an integral domain over Z, i.e. A ⊃ Z, the Langlands conjectures tell us that

ζA(s) =

∏m
i=1(s, fi)∏n

j=1 L(s, gj)

where fi, gj are modular forms for GLn(Q). Each of these L-functions has a meromorphic continuation
to C, so if we knew the Langlands conjectures, Conjecture 1 would be done.

If K = Q(i), then OK = Z[i], and
ζK(s) = ζ(s)L(s, χ)

where χ : (Z/4Z)× → {±1}.

If K = Q( 3
√

2), then OK = Z[ 3
√

2], and

ζK(s) = ζ(s)L(s, f)
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where

f(z) = η(6z)η(18z) =

∞∑
n=1

anq
n, q = e2πiz.

Using the nice analytic properties of the function of

L(s, f) =

∞∑
n=1

an
ns
,

we can show that ζK also has a meromorphic continuation.

Now, we will get back to algebra.

Proposition. Let A be a finitely generated ring over k, an algebraically closed field. Then there
are bijections

max(A)←→ Homk(A, k)←→ {x = (x1, . . . , xn) ∈ kn | f1(x) = · · · = fm(x) = 0}

where A is isomorphic as a k-algebra to k[T1, . . . , Tn]/(f1, . . . , fm).

We know that there is always such a presentation of A because if A is generated by h1, . . . , hn over
k, then we have a surjective k-algebra map k[T1, . . . , Tn] → A defined by sending Ti to hi. The
kernel I of this map is an ideal of k[T1, . . . , Tn], and therefore it is finitely generated because this
ring is Noetherian. If I = (f1, . . . , fm), then we get

A ∼= k[T1, . . . , Tn]/(f1, . . . , fm).

Proof. First, we do the case when A = k[T1, . . . , Tn]. Clearly,

Homk(k[T1, . . . , Tn], k) kn max(k[T1, . . . , Tn])

ϕ (ϕ(Ti))i

a = (ai)i {f | f(a) = 0}

ϕ {f | φ(f) = 0}

Now note that there are bijections

Homk(k[T1, . . . , Tn]/(f1, . . . , fm), k)←→ {x = (x1, . . . , xn) ∈ kn | fi(x) = 0}

and

Homk(k[T1, . . . , Tn]/(f1, . . . , fm), k)←→ {ϕ ∈ Homk(k[T1, . . . , Tn]/(f1, . . . , fm), k) | ϕ(f1) = · · · = ϕ(fm) = 0}

and
max(k[T1, . . . , Tn]/(f1, . . . , fm))←→ {m ∈ max(k[T1, . . . , Tn]) | m 3 fi for all i}

For any commutative ring A, any f ∈ A and p ∈ Spec(A), we define f(p), the value of f at p, to
be the image of f in the fraction field κ(p) of A/p (this field is called the residue field at p). If
p ∈ max(A), then κ(p) = A/p.

The idea here is to consider any ring A as a ring of functions on the space Spec(A). However, the
values at different points can take values in different fields. For example, given f ∈ Z and p = (p) a
prime ideal of Z, then f(p) = f mod p ∈ Fp.
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Theorem. Let A be a commutative ring. Then

f(p) = 0 for all p ∈ Spec(A) ⇐⇒ f is nilpotent,

i.e. fn = 0 for some n ≥ 1. In the case that A is finitely generated over a field, then in fact

f(m) = 0 for all m ∈ max(A) ⇐⇒ f is nilpotent.

If A = k[[T ]] is the ring of formal power series, then Spec(A) = {(T ), (0)}, and max(A) = {(T )}.

For any ring homomorphism f : A→ B, there is a corresponding map Spec(B)→ Spec(A). You
should think of f as taking a function on Spec(A) and pulling it back via this map to a function on
Spec(B).

There is not a corresponding map on sets of maximal ideals; for example, if f : Z ↪→ Q, then
(0) ∈ max(Q), but f−1(0) = (0) is not a maximal ideal of Z.

The world of rings and the world of spaces correspond very nicely.
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Lecture 13 (2013-02-06)

There is a correspondence

algebra geometry

commutative rings spaces

Let k be an algebraically closed field, and let

X = {x = (x1, . . . , xn) ∈ kn | f1(x) = · · · = fm(x) = 0}

for some fi ∈ k[T1, . . . , Tn]. Let A be the collection of polynomial functions on X, i.e. the k-valued
functions which can be expressed as a polynomial over k in the coordinate functions. Then A is the
image of the map

k[T1, . . . , Tn] maps(X, k)

f(T1, . . . , Tn) (x = (x1, . . . , xn) 7→ f(x1, . . . , xn))

If I is the kernel of this map, we therefore have A ∼= k[T1, . . . , Tn]/I.

We claim that max(A) = X. On the homework, you have already shown that max(A) = Homk(A, k)
when A is finitely generated over k. Then the bijection from X to Homk(A, k) is given by

X Homk(A, k)

x (f 7→ f(x))

If B = k[T1, . . . , Tn]/(f1, . . . , fm), then we have

B A maps(X, k)

X = Homk(B, k) Homk(A, k) X
injective

identity

hence the injective map is also surjective.

This universe should be the set of prime ideals of some nice commutative ring; we can dream this is
possible. This ring should be a very beautiful ring. If this ring is the integers, then we are prime
numbers, like 17.

The correspondence between rings and spaces is

A B
ϕ Spec(B) Spec(A)

p ϕ−1(p)

Last edited
2013-08-09

Math 326 - Algebra 2 Page 35
Lecture 13



Remark. If A and B are finitely generated rings over a field k, and ϕ : A→ B is a homomorphism
of k-algebras, or if A and B are finitely generated over Z, then we have an induced map max(B)→
max(A), also given by p 7→ ϕ−1(p).

Proof. For the case over k, if m ∈ max(B), then A/ϕ−1(m) ⊂ B/m. Because B/m is a finite
extension of k, we have that A/ϕ−1(m) is an integral domain that is finite-dimensional over a field,
and therefore it is a field.

Zariski topology on Spec(A), on max(A)

Recall that on the homework, you saw that for a compact Hausdorff space X, and

A = {continuous maps X → C},

then there was a natural identification X = max(A), and for any subset S ⊆ X, we have S = V (I(S))
where

I(S) = {f ∈ A | f(x) = 0 for all x ∈ S}
V (J) = {x ∈ X | f(x) = 0 for all f ∈ J} = {m ∈ max(A) | J ⊆ m}

If A is any commutative ring, then the Zariski topology on Spec(A) is defined by declaring the
closed sets to be those of the form

V (J) = {p ∈ Spec(A) | p ⊇ J}

for ideals J of A. This gives a topology, because you can check that⋂
i

V (Ji) = V (J)

where J is the ideal generated by all the Ji, and

n⋃
i=1

V (Ji) = V

(
n⋂
i=1

Ji

)
Then max(A) gets the subspace topology, as a subset of Spec(A).

For example, in Spec(Z), the closed sets are ∅, Spec(Z) itself, or a finite set of maximal ideals. This
is a stupid topological space, and we can’t recover the ring just from this topological space; this is
not as nice as the case of the compact Hausdorff space.

We hope to hear the voice of the ring A. The first person which appears here is the ring of continuous
functions on a compact Hausdorff space. I’m a young guy called ‘‘commutative ring’’, but I was
originally ‘‘the ring of continuous functions on a compact Hausdorff space’’. Now I am an algebraic
object, so I must say goodbye to my home village, the space, but I will always keep it in my heart
as a set of maximal ideals.

Polynomials are determined by their values at finitely many points; thus

S = {x ∈ Spec(A) | if f, g ∈ A and f(y) = g(y) for all y ∈ S, then f(x) = g(x)}

At midnight, some people put a candle on their head and *makes hammering motion with hand* . . .
I’m out of time, so I will explain this next time.
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Lecture 14 (2013-02-08)

Let’s talk more about the spectrum of a ring and the Zariski topology.

In the Zariski topology on Spec(C[T ]), the closed sets are just ∅, Spec(C[T ]), and finite sets of
maximal ideals (i.e. points of C). It may seem counterintuitive, but (0) converges to (T ), to (T − 1),
to (T − 2), etc. This is because, if S = {(0)}, then

I(S) = {f ∈ C[T ] | f ∈ (0)} = {0},

and thus
S = V (I(S)) = {prime p ⊂ C[T ] | p ⊇ I(S)} = Spec(C[T ]).

In general, if A is an integral domain, then we have Spec(A) = {(0)}.

If you go to the Kifune Shrine in Kyoto (it must be at midnight), you can cut out a piece of paper,
write the name of your enemy on it, and hammer nails into it to hurt them. You must have a candle
on your head, and there are special white clothes to wear. This is like the Zariski topology; if you
take a polynomial and hammer it enough times in C, it will die.

n
am

e Zariski topology

Localization

Let A be a commutative ring and let S be a multiplicative subset of A, i.e. a subset S ⊂ A such that
1 ∈ S and a, b ∈ S implies ab ∈ S. We will define a commutative ring S−1A, called the localization
of A at S.

In the case when A is an integral domain and S ⊂ A \ {0}, we have that

S−1A = {as | a ∈ A, s ∈ S} ⊂ fraction field of A.

Note that a
s = a′

s′ if and only if sa′ = s′a.

In general, we define S−1A := A× S/ ∼ where (a, s) ∼ (a′, s′) when there is some t ∈ S such that
tsa′ = ts′a. This t ∈ S is necessary to make ∼ an equivalence relation. I don’t have an example in
mind of where this fails without the t. You can prove on your own that ∼ is an equivalence relation.

The set S−1A has a ring structure, and in fact a ring structure over A, i.e. we have a ring
homomorphism A→ S−1A.
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We simply define, as you are used to,

a

s
+
b

t
=
ta+ sb

st
,

a

s

b

t
=
ab

st
.

The ring homomorphism A→ S−1A is defined by a 7→ a
1 . This homomorphism has the following

universal property:

• Any element of S, considered as an element of S−1A, is invertible, and

• If B is a commutative ring and h : A→ B is a ring homomorphism such that h(s) ∈ B× for
all s ∈ S, then there is a unique ring homomorphism h′ : S−1A→ B such that the following
diagram commutes:

A B

S−1A

h

h′

Note that h′(as ) = h(a)
h(s) . As usual with a universal property, if C is any other ring satisfying the

universal property, then S−1A ∼= C.

When the multiplicative subset S is of the form S = {1, f, f2, . . .}, then S−1A is written as A[ 1
f ].

There is an isomorphism of rings A[ 1
f ] ∼= A[T ]/(fT − 1) over A.

The homomorphism A→ S−1A induces a map Spec(S−1A)→ Spec(A) in the opposite direction, as
we’ve seen.

Proposition. The map Spec(S−1A)→ Spec(A) is injective, and its image is

{p ∈ Spec(A) | S ∩ p = ∅}.

Proof. For any ideal I of A, we have its extension to an ideal of S−1A, namely

S−1I = {xs | x ∈ I, s ∈ S}.

It is easy to check that if q ∈ Spec(S−1A) has image p ∈ Spec(A) under the map Spec(S−1A) →
Spec(A), i.e. p is the preimage of q under the map A→ S−1A, then

p = {x ∈ A | x1 ∈ q}.

Clearly, S−1p = q, and p ∩ S = ∅.

Conversely, if p ∈ Spec(A) has p ∩ S = ∅, then S−1p is a prime ideal of S−1A and

p = {x ∈ A | x1 ∈ S
−1p}.

What happens to the prime ideals p ⊂ A with p ∩ S 6= ∅? Then we have S−1p = S−1A.

Corollary. The map Spec(A[ 1
f ])→ Spec(A) is injective. The image is

{p ∈ Spec(A) | fn /∈ p for all n ≥ 0}
={p ∈ Spec(A) | f /∈ p}
={p ∈ Spec(A) | f(p) = 0}.
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We will identify Spec(A[ 1
f ]) with the image

D(f) := {p ∈ Spec(A) | f(p) 6= 0},

which is the complement of V ((f)). Because V ((f)) is closed, D(f) is open.

The sets D(f), as f ranges over A, form a basis for the Zariski topology on Spec(A). Thus,
U ⊆ Spec(A) is open if and only if

U =
⋃
λ

D(fλ) =
⋃
λ

V ((fλ))c

for some set of {fλ} ⊆ A.

Note that
D(f1) ∩ · · · ∩D(fn) = D(f1 · · · fn).

Theorem. For a commutative ring A,

{f ∈ A | f(p) = 0 for all p ∈ Spec(A)} = {nilpotent elements of A}.
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Lecture 15 (2013-02-11)

The rest of the course will cover

• the correspondence between ideals and geometry

• local rings, Dedekind domains, and regular local rings

• completion, p-adic numbers

• algebraic curves

• projective curves

• Weil conjectures and recent big theorems in number theory

Last time, we proved that

nil(A) = {f ∈ A | f(p) = 0 for all p ∈ Spec(A)} =
⋂

p∈Spec(A)

p.

Now, let’s prove that if A is finitely generated over a field, then in fact

nil(A) = {f ∈ A | f(p) = 0 for all p ∈ max(A)} =
⋂

m∈max(A)

m.

The ⊆ inclusion follows from what we proved last time, so let’s prove the ⊇ inclusion.

Assume that f(p) = 0 for all p ∈ max(A). We will prove that A[ 1
f ] = 0, which suffices to show that

f is nilpotent.

If A[ 1
f ] 6= 0, then there is some m ∈ max(A[ 1

f ]). Because A is finitely generated over a field, the

inverse image of m in A is also a maximal ideal, say p ∈ max(A). Then f
1 /∈ m because f ∈ A[ 1

f ]×,
but then f /∈ p, which contradicts our assumption.

Ideal ←→ Geometry

Let A be a commutative ring. For an ideal I of A, we use
√
I or rad(I) to denote

{f ∈ A | there is some n ≥ 1 such that fn ∈ I},

which is called the radical of I. Note that
√
I is the inverse image of nil(A/I) under the quotient

map A→ A/I. If I =
√
I, then we say that I is a radical ideal.

Note that
√√

I =
√
I; this is easy to see from the definition.

Theorem. Let A be a commutative ring.

1. The radical ideals I of A are in bijection with the closed subsets V (I) of Spec(A).

2. If A is finitely generated over a field, then I =
√
I if and only if V (I) is a closed subset of

Spec(A).
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Proposition. Let A be a commutative ring.

1. For any subset S ⊆ Spec(A), we have S = V (I(S)), where recall that

I(S) = {f ∈ A | f(p) = 0 for all p ∈ S},
V (I) = {p ∈ Spec(A) | f(p) = 0 for all f ∈ I}.

2. For any ideal J of A, we have
√
J = I(V (J)).

1’ & 2’. If A is finitely generated over a field, then Spec(A) can be replaced by max(A).

Proof of part 2 of proposition. By replacing A by A/J , it is enough to prove that

nil(A) = I(V (0))

because nil(A) =
√

0 and there is a bijection

Spec(A/J)←→ {p ∈ Spec(A) | p ⊇ J}.

But we know this is true, because V (0) = Spec(A), so

I(V (0)) = {f ∈ A | f(p) = 0 for all p ∈ Spec(A)} = nil(A).

Note that the theorem follows from the proposition; the bijection is given by

V ( )

I( )

Definition. Let k be an algebraically closed field. A subset of kn of the form

V (f1, . . . , fm) = {x = (x1, . . . , xn) ∈ kn | f1(x) = · · · = fm(x) = 0}

where f1, . . . , fm ∈ k[T1, . . . , Tn] is called an algebraic subset of kn. We know there is an identification
kn = max(k[T1, . . . , Tn]). Then algebraic subsets of kn are just the closed subsets in the Zariski
topology; the above set is just V (J) for J = (f1, . . . , fm).

Let S be an algebraic subset of kn, and let A be the ring of polynomial functions on S, i.e. the
functions on S that can be written as polynomials in the coordinate functions. Then we can identify
S = max(A), and there is a bijection

{radical ideals J of A} {algebraic subsets of kn contained in S}

V ( )

I( )
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Prime Ideals

In the ring k[T1, T2], the ideals (T1), (T2), and (T 2
1 − T 3

2 − 1) are prime ideals, but (T1T2) is not a
prime ideal.

−2 −1 1 2

−2

−1

1

2

y2 − x3 − 1 = 0

−2 −1 1 2

−2

−1

1

2

y = 0

−2 −1 1 2

−2

−1

1

2

x = 0

−2 −1 1 2

−2

−1

1

2

xy = 0

Prime ideals in k[T1, . . . , Tn] correspond to irreducible algebraic sets, also known as algebraic
varieties. These cannot be written as a non-trivial union of smaller algebraic sets. In the same way
that a prime number is a number that cannot be divided into two other numbers, an algebraic
variety is an algebraic subset that cannot be divided into two other algebraic subsets.

The prime ideal is a princess of the world of ideals. Her father is the prince ‘‘Point’’ in the world of
geometry. Her mother is the princess ‘‘Prime Numbers’’ in the world of numbers. She inherits the
purity from her parents.
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Lecture 16 (2013-02-13)

Definition. A non-empty topological space X is said to be irreducible if, whenever we have
X = Y ∪ Z where Y and Z are closed subsets of X, then either X = Y or X = Z.

For example, the set V (xy) is not irreducible:

−2 −1 1 2

−2

−1

1

2

xy = 0

=
−2 −1 1 2

−2

−1

1

2

y = 0

∪
−2 −1 1 2

−2

−1

1

2

x = 0

Theorem. Either

(i) let A be a commutative ring, and X = Spec(A), or

(ii) let A be finitely generated commutative ring over a field k, and X = max(A).

Then

1. In the bijection
radical ideals of A←→ closed subsets of X,

prime ideals correspond to irreducible subsets.

2. In case (i), if a prime ideal p corresponds to Y , then Y = {p} in Spec(A).

3. In case (i), assume that A is noetherian; this is already true in case (ii). Then X is a finite
union of irreducible closed subsets.

Proof of 1. Let p be a prime ideal of A. We will prove that V (p) is irreducible.

Suppose for the sake of contradiction that V (p) = V (J1) ∪ V (J2). For i = 1, 2, because

V (Ji + p) = V (Ji) ∩ V (p) = V (Ji),

WLOG we can assume that Ji ⊇ p. We want to prove that either J1 = p or J2 = p. If J1 6= p, then
we can find some x ∈ J1 \ p. Choose any y ∈ J2. Then xy ∈ J1 ∩ J2, so

V (xy) ⊇ V (J1 ∩ J2) = V (J1) ∪ V (J2) = V (p).

In case (i), this shows that p ∈ V (p) ⊆ V (xy), so that xy ∈ p. In case (ii), this shows that for any
m ∈ max(A) with m ⊇ p, we have xy ∈ m; but⋂

n∈max(A/p)

n = 0
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because A/p has no nilpotents, so ⋂
m∈max(A)

m⊇p

m = p,

and thus in case (ii) we also have xy ∈ p. Thus, in either case, we have xy ∈ p, and because x /∈ p
we must have that y ∈ p. Thus J2 ⊆ p, and because J2 ⊇ p, this shows that J2 = p.

Now let’s prove the converse. Let Y ⊆ X be a closed subset that is irreducible; we want to prove that
I(Y ) is a prime ideal of A. By replacing X by Y , it is enough to prove that if X is irreducible, then
I(X) = nil(A) is a prime ideal. By replacing A by A/ nil(A), we may assume that I(X) = nil(A) = 0,
so that our goal is now to show that A is an integral domain. We can do this because the map
Spec(A/nil(A))→ Spec(A) induced by the quotient map A→ A/ nil(A) is a homeomorphism.

Let f, g ∈ A satisfy xy ∈ I(Y ) = 0. Thus V (f) ∪ V (g) = X. Because X is irreducible, either
V (f) = X or V (g) = X, so that either f = 0 or g = 0.

Proof of 2. Easy.

We need some preparation for the proof of 3.

Proposition. If A is a commutative ring, the following two conditions are equivalent:

(i) A is noetherian.

(ii) For any non-empty set Φ of ideals of A, there is a maximal element of Φ (under the ordering
given by inclusion).

Proof. First, let’s show that (i) =⇒ (ii); thus, let A be noetherian and let Φ be a non-empty set of
ideals of A. Let I0 ∈ Φ. If I0 is not maximal in Φ, then there is some I1 ∈ Φ such that I0 ( I1. If I1

is not maximal in Φ, then there is some I2 ∈ Φ such that I1 ( I2. Continuing, if Φ doesn’t have a
maximal ideal, then we have an infinite ascending chain of ideals

I0 ( I1 ( I2 ( · · ·

which contradicts the assumption that A is noetherian because J =
⋃∞
n=0 In cannot be finitely

generated.

Now, let’s show that (ii) =⇒ (i). For any ideal J , let Φ consist of all the finitely generated ideals
contained in J . If J is not finitely generated, then there is no maximal element in this collection,
which would contradict our assumption.

This proof is a little dangerous. It may take 30 years. We may have to tell our children that, when
we were young, we were in a course called ‘‘Algebra 2’’ where we tried to find a maximal ideal in Φ,
but that we still are not done. This is not such a good thing for the family. We need to use some
sort of axiom of choice.

It never happens that, when we go home and open the refrigerator, we see all infinitely many prime
numbers there. We will never observe all of an infinite set, but we know it is there.

Proof of 3. We know that there is a bijection

radical ideals of A←→ closed subsets of Spec(A).

For any non-empty set Φ of closed subsets of X, we know that Φ has a minimal element.
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Now let

Φ = {closed subsets Z ⊆ X | Z is not a finite union of irreducible closed subsets of Z}.

We want to prove that Φ = ∅. Suppose for the sake of contradiction that Φ 6= ∅. Then Φ has a
minimal element Z, and certainly we cannot have that Z is irreducible, so Z = Y1 ∪ Y2 where Y1, Y2

are closed and Y1, Y2 6= Z. By minimality of Z, we must have that

Y1 = Y11 ∪ · · · ∪ Y1m, Y2 = Y21 ∪ · · · ∪ Y2n

for some irreducible closed sets Yij . But then Z =
⋃
i,j Yij , which contradicts the fact that Z ∈ Φ.

Thus, our assumption was incorrect, and we must have Φ = ∅.

Let k be an algebraically closed field. An irreducible algebraic set of kn = max(k[T1, . . . , Tn]) is
called an affine algebraic variety.

There are things which we want to call algebraic varieties which are not affine. For example, if we
glue two copies of k together, we can make

P1(k) = k ∪ k
k×

x
x−1

x
x
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Lecture 17 (2013-02-15)
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Lecture 18 (2013-02-18)

Last time, we started talking about completion and the p-adic fields.

Definition. Assume we are given sets Xn and maps fn, as follows:

· · · X3 X2 X1
f3 f2 f1

Then the projective (a.k.a. inverse) limit of this system, denoted lim←−Xn, is defined to be

lim←−Xn := {(xn)n∈N | xn ∈ Xn and fn(xn+1) = xn}.

Definition. Let A be a commutative ring, and let I be an ideal of A. The I-adic completion of A,
denoted AI , is defined to be

AI := lim←−A/I
n,

where the map fn : A/In+1 → A/In is just the quotient map.

Example. If A = R[T ] and I = (T ), then we have

A/In = R[T ]/(Tn) = {a0 + a1T + · · ·+ an−1T
n−1 | ai ∈ R},

and thus

lim←−A/I
n = R[[T ]] =

{ ∞∑
n=0

anT
n

∣∣∣∣∣ an ∈ R
}
,

the formal power series ring in the variable T . More generally, if A = R[T1, . . . , Tn] and I =
(T1, . . . , Tn), then

lim←−A/I
n = R[[T1, . . . , Tn]] =

 ∑
m1,...,mn≥0

am1,...,mnT
m1
1 · · ·Tmnn

∣∣∣∣∣∣ am1,...,mn ∈ R

 .

If A is a local ring and m is its maximal ideal, then lim←−A/m
n is called the completion of A. This is

often denoted Â.

Let A be a commutative ring, and p ∈ Spec(A). The idea of localization is to make things simple;
completion makes things even more simple.

A Ap Âp = lim←−Ap/(pAp)
n

simple simpler

If p ∈ max(A), then Âp = lim←−A/p
n because we have a canonical isomorphism A/pn ∼= Ap/(pAp)

n.
This is because elements of A \ p are invertible in A/pn.

Example. Let a ∈ C. Then

C[T ](T−a) Ĉ[T ](T−a){
f
g

∣∣∣ f, g ∈ C[T ], g(a) 6= 0
}

C[[T − a]] ‘‘Taylor expansions at a’’

⊂
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In 1896, Hensel defined Zp and Qp where p is a prime number.

Zp := lim←−Z/pnZ = lim←−Z(p)/p
nZ(p).

The ring Zp is an integral domain, and then we define

Qp := fraction field of Zp.

Thus, we have Z ↪→ Z(p) ↪→ Zp, and Q ↪→ Qp. In Qp, we have the following relations:

Z(p) = Q ∩ Zp, Qp = Q + Zp, Z = Z[1
p ] ∩ Z(p), Qp = Z[1

p ] + Zp = Zp[1
p ].

Picture of Z3

Z/3Z Z/9Z Z/27Z

You can think of an element of Z3 as being a choice of one of the three petals at each stage. You
can feel that you approach some point, some limit; this is the element of Z3.

This picture also shows us that

Qp =
∐

a∈Z[ 1
p

]

0≤a<1

Zp + a =
⋃
n≥0

p−nZp.

image

Moreover, Qp/Zp ∼= Z[1
p ]/Z.

The formal definition of the topology on Qp is that xn converges to a when, for any fixed n ≥ 0,
xλ − a ∈ pnZp for all λ� 0.

Remark. Arithmetic in R and in each Qp is simpler than in Q. We can understand Q be studying
the problem in R and Qp first, and then glueing these pieces of local information together. This is
known as the Hasse principle.

For example, in Q, although
√

1 = 1 exists in Q,
√

1.1 and even
√

1.01 do not exist in Q. In R,
√

1.1

exists, and it is near to
√

1. In Q5,
√

1 exists, and
√

1− 5
4 =

√
−1
2 exists and is near to 1. We know

that
√
−1 exists in Z5 because we can find it in each Z/5nZ:

Z/125Z Z/25Z Z/5Z

57 7 2

68 18 3
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If we drop money, we are usually very sad if the money is big. But for example, if we drop 310

dollars, we can relax, because this is very small in the 3-adics. This world is dominated by the real
numbers, though, not by the p-adics; we don’t live in a p-adic world. That is strange.

R is like the sun, and the p-adics are like the stars. The sun blocks out the stars during the day,
and humans are asleep at night and don’t see the stars, even though they are just as important.

R daytime sky

· · ·
Q2 Q3 Q5 Q7

nighttime sky
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Lecture 19 (2013-02-20)

When we complete the ring C[T ] at the prime ideal (T ), we saw last time that we get the ring
C[[T ]], the formal power series in the variable T . Its fraction field is denoted C((T )), and elements
of C((T )) are called Laurent series in T :

C((T )) =

{ ∞∑
n=n0

anT
n

∣∣∣∣∣ ai ∈ C for some no ∈ Z

}
.

We can also form the fields C((T −1)), C((T −2)), . . . but there is one more field, which is C(( 1
T )). We

say that this is the Laurent expansion at∞. The field C(T ) is like Q, the fields C((T )), C((T −1)), etc.
are like the p-adic fields Q2, Q3, and R is like the expansion at ∞. This analogy is very mysterious.

C(T )

C(( 1
T ))

C((T ))

C((T − 1))

C((T − 2))

⊂

⊂
⊂⊂· · ·

Q

R

Q2

Q3

Q5

⊂

⊂
⊂⊂· · ·

The Greeks wanted to understand the world using mathematics. But once they realized Q and R
are different, it was no longer so clear to them how to do that. The student who told others about
the existence of irrational numbers was killed by the gods, or perhaps just thrown out of the boat
by the other students.

Nowadays, we worry if the weight of our body becomes too small or too large, but we don’t worry
about whether it is a rational number or an irrational number.

Why does Q want to grow to R or Q2 or Q3? Its heart has holes, for example at
√

2 and
√

3. This
is similar to mankind; we can grow to be big boys or big girls, but there is still some sadness in our
hearts, and we grow to love another person.

Theorem (Hensel’s lemma). Let A be a commutative ring, and let I be an ideal of A. Let f ∈ A[T ],
and assume that a ∈ A has the property that f(a) = 0 mod I, and that f ′(a) mod I is invertible in
A/I. Then there exists a unique b ∈ Â := lim←−A/I

n such that f(b) = 0 and b ≡ a mod I. In other
words, there exist unique bn ∈ A/In such that f(bn) ≡ 0 mod In and bn ≡ a mod I, and then we
have b = (bn)n≥1.

Proof. We proceed by induction on n ≥ 1. Assume the unique existence of bn ∈ A/In. Fix a choice
of b̃n ∈ A/In+1, a lifting of bn. Then by the general fact that

g(T + x) ≡ g(T ) + g′(T )x mod x2

for any polynomial g, we have that

f(b̃n + x) = f(b̃n) + f ′(b̃n)x+ (a multiple of x2)︸ ︷︷ ︸
∈I2n⊂In+1

.
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Because f ′(b̃n) ∈ (A/In+1)×, there is a unique choice of x, namely

x = −f ′(b̃n)−1f(b̃n),

such that f(b̃n +x) ≡ 0 mod In+1. We then set bn+1 = b̃n− f ′(b̃n)−1f(b̃n), which is the unique good
choice in A/In+1. Note that we also have that bn+1 ≡ bn mod In, because f(b̃n) ∈ In/In+1.

For example, suppose that we want to find
√
−1 in Z5. We know that we can choose

√
−1 = 2 in

Z/5Z (the other choice is 3). We hope to find the y such that

(2 + 5y)2 ≡ −1 mod 25,

and this y is the x in the proof. Solving, we get that y ≡ 1 mod 5, and we note that 2 + 5 · 1 = 7
has the property that 7 ≡ 2 mod 5 and 72 ≡ −1 mod 25.

Here is another application. If p is an odd prime and m ∈ Z is an integer with p - m, then we can
show that if

(
m
p

)
= 1, then x2 = m has a solution Qp (which is in fact in Zp; one way to see this is

that Zp is a PID, hence normal). We can see this by applying Hensel’s lemma to f(T ) = T 2 −m;
there is an a ∈ Z such that a2 −m ≡ 0 mod p, and f ′(a) = 2a which is invertible in Z/pZ.

We can use Hensel’s lemma and the p-adics to better understand number theory.

It may happen that tomorrow, when you wake up, taking three steps returns you close to your
starting point, and taking nine steps returns you even closer.
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Lecture 20 (2013-02-22)
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Lecture 21 (2013-02-25)
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Lecture 22 (2013-02-27)

Let X ⊆ Cn be an affine algebraic variety of dimension d. Recall that an affine algebraic variety is
defined to be an irreducible algebraic set.

If A is the coordinate ring of X (the collection of polynomial functions on X), then A is an integral
domain, and the transcendence degree of Frac(A) over C is d. There is a bijection between points
x ∈ X and maximal ideals m ∈ max(A). The dimension of the local ring Am is d.

If X is non-singular, then X has the structure of a complex analytic manifold. Each element of
the local ring Am can be considered as a holomorphic function defined on an open neighborhood
of x in X, each of which in turn can be considered as an element of C[[T1, . . . , Td]] (via Taylor
expansion). The image consists of the convergent series. Letting the maximal ideal mAm of Am be
mAm = (t1, . . . , td), we have an isomorphism

C[[T1, . . . , Td]] ∼= lim←−Am/(mAm)r ∼= lim←−A/m
r,

where Ti 7→ ti.

Theorem. Let A be a noetherian regular local ring. Then

1. A is an integral domain.

2. A is normal.

3. For all p ∈ Spec(A), the localization Ap is a regular local ring.

Proof. These are all very hard results; we won’t go over the proofs.

Definition. Let A be a noetherian integral domain. We will say that A is regular when Ap is a
regular local ring for all p ∈ Spec(A). In fact, this is equivalent to only requiring that Am be a
regular local ring for all m ∈ max(A), by part 3 of the above theorem.

Remark. If A is a noetherian integral domain, then A is normal if and only if Ap is normal for all
p ∈ Spec(A), and again, we in fact only need to ask that Am is normal for all m ∈ max(A). Thus,
putting the above results together, if A is a noetherian integral domain, then

1. A regular =⇒ A normal.

2. If dim(A) ≤ 1, then A is regular if and only if A is normal.

At the singular point of the cone z2 = x2 + y2, the local ring is normal. However, it is not a regular
local ring; the ring is

(C[x, y, z]/(x2 + y2 − z2))(x,y,z),

and because z2 = x2 + y2 = (x+ iy)(x− iy), we can see that this is isomorphic to (C[x, y, z]/(z2 −
xy))(x,y,z).

The ring A = C[x, y, z]/(z2 − xy) can be thought of as lying between C[x, y] and C[
√
x,
√
y]. It

corresponds to C[x, y,
√
xy]. The Galois group of the extension C[

√
x,
√
y] of C[x, y] is Z/2Z×Z/2×Z,

and if σ(
√
x) = −

√
x and σ(

√
y) = −√y, then

C[x, y,
√
xy] = {f ∈ C[

√
x,
√
y] | σ(f) = f}.

Because A is normal, then for any g ∈ Frac(A) integral over A, then g ∈ Frac(C[
√
x,
√
y]) is integral

over C[
√
x,
√
y], because C[

√
x,
√
y] is normal.
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When I took Itaka’s algebraic geometry class, I gave up trying to understand blowing up rings
because he thought we understood everything and went very fast, just said ‘‘blow up this, blow up
that, you all have seen this before’’ so that is why I am no good at blowing up rings now.

Remember that a Dedekind domain is a noetherian normal integral domain of dimension ≤ 1. What
we’ve discussed shows that this is equivalent to being a noetherian regular integral domain of
dimension ≤ 1.

If A is a Dedekind domain, and m ∈ max(A), then Am is a regular local ring, and a PID.

Why can we have a decomposition of an ideal I of A into a product of maximal ideals? For any
ideal I, we have IAm = (mAm)e(m) where almost all e(m) are 0, and then we have

I =
∏

m∈max(A)

me(m).

If I and J are ideals of a commutative ring A and IAm = JAm for all m ∈ max(A), then I = J .
More generally, if M is an A-module, and N,N ′ are submodules of M such that Nm = N ′m for all
m ∈ max(A), then we have that N = N ′.
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Lecture 23 (2013-03-01)

The homework that was due today will be the last one.

Today we’ll talk about algebraic curves.

Let k be a field, and let K be a finite extension of k(T ). This is similar to letting K be a finite
extension of Q. In the 19th century, people started to compare these two scenarios. Recall that OK
denotes the integral closure of Z in K; analogously, let A be the integral closure of k[T ] in K.

Both A and OK are always Dedekind domains. However, the following does not occur in the case of
OK : we can let A′ be the integral closure of k[ 1

T ] in K, and let A′′ be the integral closure of k[T, 1
T ]

in K. Then U ′′ = max(A′′) can be regarded as a subset of both U = max(A) and U ′ = max(A′),
and we can form P1(k) as

P1(k) = max(k[T ]) ∪max(k[T, 1
T

]) max(k[ 1
T ]) = k ∪ k

k×

x
x−1

x
x

It is always the case that max(A′′) is just max(A) minus a finite set, and also max(A′) minus a
finite set.

When k = C, we have that P1(C) = C ∪ {∞} is the Riemann sphere. The ring A′ corresponds to
P1(C) \ {0} ∼= C. Note how looking at A or A′ corresponds to stereographic projection from the
north or south pole.

Localization is compatible with taking integral closure; in other words, if A is a domain, K is the
fraction field of A, L is a finite extension of K, and B is the integral closure of A in L, then if
S ⊂ A \ {0} is a multiplicative subset of A, then the integral closure of S−1A in L is S−1B. If A is
finitely generated over a field k, then B is finitely generated as an A-module, and therefore also
finitely generated over k.

In the case of Z, the best analog we know for P1 is taking X = max(Z)∪ {∞} where ∞ denotes the
embedding of Q ↪→ R. More generally, for OK , we take max(OK) ∪ {∞1, . . . ,∞r}, which we can
regard as the set of all embeddings of K into locally compact topological fields with dense image,
considered up to a certain equivalence.

Going back to the case of k = C, we have that U and U ′ are Riemann surfaces (one-dimensional
complex analytic manifolds), and X = U∪U ′ is a compact Riemann surface. The field of meromorphic
functions on P1(C) is just C(T ).

For a less trivial example, suppose we have K = C(T )(
√
T 3 + 1), so that A = C[T,

√
T 3 + 1]. It

may be surprising that A′ = C[ 1
T ,
√

( 1
T )4 + 1

T ], so that the corresponding sets are

U = {(x, y) ∈ C2 | y2 = x3 + 1}
U ′ = {(u, v) ∈ C2 | v2 = u4 + u}
U ′′ = U − {(x, y) ∈ U | x = 0}

= U − {(0,±1)}
= U ′ − {(u, v) ∈ U ′ | u = 0}
= U ′ − {(0, 0)}

and X is U , together with the point (0, 0) of U ′.
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Theorem. There is a bijection between (isomorphism classes of) function fields in one variable
over C and (isomorphism classes of) compact connected Riemann surfaces, where K ↔ X where
K is the field of meromorphic functions on X, and X is constructed from K as above.

A function field in one variable over C is a field which is isomorphic over C to a finite extension of
C(T ); however, note that you are free to choose a different T .

The complex topology on the surface X corresponding to K = C(T )(
√
T 3 + 1) is a torus. In general,

f is a polynomial with no repeated roots, the surface associated with C(T )(
√
f) is a torus with n−1

2
holes if n is odd, and n−2

2 holes if n is even.

We say that the number of hole of a donut is g, the genus. Is that how ‘‘donut’’ is spelled? It is too
bad, I can eat donuts, but I cannot write it. It turns out that

g = dimC(A′′/(A+A′)),

and we always know that A′′/(A+ A′) is a finite-dimensional vector space over C. For example,
if K = C(T ), then because C[T, 1

T ] = C[T ] + C[ 1
T ], we have that g = 0; if K(T )(

√
T 3 + 1), then

T−1
√
T 3 + 1 is a C-basis for A′′/(A+A′), so the genus is 1.
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Lecture 24 (2013-03-04)

We mentioned last time that there was a correspondence between algebra and geometry,

function fields in one
variable over C ←→ compact Riemann surfaces

You can find some good books about this in the Eckhart library, in section QA333. One good book
is G. Spring’s Introduction to Riemann Surfaces.

An algebraic formulation of this correspondence is

K ←→ X,

where
X = {discrete valuation rings V | k ⊂ V ⊂ K and Frac(V ) = K}.

A discrete valuation ring is a regular local noetherian ring of dimension one. Equivalently, we could
define it to be a local ring whcih is a PID, but not a field. Some examples are C[T ](T ), and Z(p).

An example of how to think about this correspondence is if

X = Spec(A) ∪
Spec(A′′)

Spec(A′).

Thus, x ∈ X equals either a maximal ideal m ∈ max(A), or m ∈ max(A′). Letting V = Am or A′m
as the case may be, this is a DVR, and then the point x corresponds to this V , and X can be
understood as the set of such V .

If K is a function field in one variable over C, we can let

V = {f ∈ K | f is holomorphic at x}.

Then V is a PID, with a prime element t (which generates the unique maximal ideal of V ) given by
a function which vanishes with order 1 at x. Thus, any f ∈ K× can be written uniquely as f = utn

where u ∈ V ×, and n is the order of the zero / pole of f at x.

Let’s consider the example of K = C(T )(
√
f(T )) where f(T ) = (T − α1) · · · (T − αn), the αi being

distinct. Assume also that n is odd.
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Lecture 25 (2013-03-06)

Projective varieties; schemes

Let k be a field. Then n-dimensional projective space over k is defined as

Pn(k) = (kn+1 \ {0})/ ∼

where (a0, . . . , an) ∼ (b0, . . . , bn) when there is some c ∈ k× such that bi = cai for all i. The
equivalence class of (a0, . . . , an) is denoted as (a0 : · · · : an).

Suppose that k is algebraically closed. We can define a Zariski topology on Pn(k) as follows:
Y ⊆ Pn(k) is closed if and only if Y ∩Wr is closed in Wr for all r.

Definition. A closed subset X ⊆ Pn(k), i.e. a projective algebraic set, is said to be irreducible if

(i) X 6= ∅

(ii) For any closed Y, Z ⊆ Pn(k) such that X = Y ∪ Z, we have either X = Y or X = Z.

An irreducible projective algebraic set is called a projective algebraic variety.

Example. The subset

X = {(x0 : x1 : x2) ∈ P2(k) | x2
2x0 = x3

1 + x3
0}

is a projective algebraic variety. Note that U0 of this X is

U0 = {(x1, x2) ∈ k2 | x2
2 = x3

1 + 1},

and that X \ U0 = {(0 : 0 : 1)}.

Given a projective algebraic variety X ⊆ Pn(k), the function field of X is defined as follows: we have
X =

⋃n
r=0 Ur, and X 6= ∅ so some Ur 6= ∅, and because Ur 6= ∅ we have that Ur is an irreducible

algebraic set in kn. If Ur 6= ∅ and Us 6= ∅, then Ur ∩Us 6= ∅. The ring O(Ur), the ‘‘coordinate ring’’
of Ur ⊆ kn, consists of the polynomial functions on Ur. We can identify Ur = max(O(Ur)), so that

X =

n⋃
r=0

max(O(Ur)).

The intersection Ur ∩ Us can be identified with max(O(Ur[
1
xs

])), which is an open subset of
max(O(Ur)) = Ur.

If Ur 6= ∅, then O(Ur) is an integral domain, and if Ur ∩ Us 6= ∅, then

O(Ur[
1

xs
]) = O(Us[

1

xr
]).

Therefore their fraction fields are the same as well:

Frac(O(Ur)) = Frac(O(Ur[
1
xs

])) = Frac(O(Us[
1
xr

])) = Frac(O(Us)).

We define the function field K of X t be Frac(O(Ur)) for any Ur 6= ∅. We then have that

dim(X) = dim(O(Ur)) = tr.deg.k(K).
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Conjecture (Resolution of singularities). Let K be a finitely generated field over k. Then there is
a non-singular projective algebraic variety X ⊆ Pn(k), such that K is the function field of X.

This was proved by Hironaka in the case that char(k) = 0.

The conjecture is true if tr.deg.k(K) = 1. In this case, we have that X = max(A) ∪max(A′) and
that X can be embedded in P3(k); sometimes even P2(k).

For example,
X = {(x0 : x1 : x2) ∈ P2(C) | xd0 = xd1 + xd2}

is a non-singular variety of genus (d−1)(d−2)
2 .

Theorem (Fermat’s Last Theorem for C(T )). For n ≥ 3, there are no non-constant f, g ∈ C(T )
such that fn + gn = 1.

Proof. The function field K is C(T1, n
√

1− Tn1 ). This is the fraction field of C[T1, T2]/(Tn1 +Tn2 − 1).
If such an f, g exist, then there is an embedding K ↪→ C(T ), defined by T1 7→ f and T2 7→ g, induced
from C[T1, T2]/(Tn1 + Tn2 − 1) → C(T ). But such an embedding would correspond to a covering
P1(C) � X of compact Riemann surfaces. This would then induce surjections in homology,

H1(P1(C),Q) � H1(X,Q).

But H1(P1(C),Q) = 0 and H1(X,Q) = Q2g where g = (n−1)(n−2)
2 > 0 when n ≥ 3, so this is

impossible. It’s important to use homology over a field, and in particular a field of characteristic 0;
if we did it over Fp and the degree of the covering was a multiple of p, then the map would be the
zero map and we would not have a contradiction. Integral homology can also mess up surjectivity,
because for example we might have Z→ Z, 1 7→ n.
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Lecture 26 (2013-03-08)

Today we’ll discuss recent developments in number theory. Since I’m old, this means what happened
in the last 50 years. To me it feels like one day.

Very, very big theorems in number theory appear once in each decade.

In 1973, Deligne proved the Weil conjectures using works of Grothendieck. In 1983, Faltings proved
Mordell’s conjecture. In 1994, Wiles proved Fermat’s Last Theorem. In 2006, Taylor proved a big
part of the Sato-Tate conjecture. In 2012, we have the proof of the abc conjecture by Mochizuki,
though this is still being checked.

If you look at Mochizuki’s homepage, you can see that his picture is somewhat strange, it is like
*makes face*. But 10 years ago he was normal, and also I still understood his work then. In most
pictures of Mochizuki, he looks normal, but for some reason he has chosen a strange picture.

Theorem (Weil, 1941). Let K be a finite extension of Fp(T ). Let A, A′, and A′′ be the integral
closures of Fp[T ], Fp[ 1

T ], and Fp[T, 1
T ] in K, respectively. Let X = max(A) ∪max(A′′) max(A′). Let

ζX(s) =
∏
x∈X

(
1− 1

#κ(x)s

)
= ζA(s)

∏
x∈X\Spec(A)

(
1− 1

#κ(x)s

)
,

where κ(x) is the residue field at x. Let Fq be the integral closure of Fp in K, so that Fq = A ∩A′.
Then ζX(s) is of the form

ζX(s) =
(1− α1q

−s) · · · (1− α2gq
−s)

(1− q−s)(1− q1−s)
,

where each αi satisfies |αi| = q1/2 (this last condition is the analog of the Riemann hypothesis),
and g is the genus, which can be obtained as g = dimFq(A

′′/(A+A′)).

Example. Let K = F5(T )(
√
T 3 + 1). Then you showed on the homework that

ζA(s) =
1 + 51+2s

1− 51−s = ζA(s) · 1

1− 5−s︸ ︷︷ ︸
contribution of ∞,

where X\Spec(A)={∞}

=
(1 + i

√
5 · 5−s)(1− i

√
5 · 5−s)

(1− 5−s)(1− 51−s)
.

Note that from this we can see that the genus is 1.

Example. Let K = F3(T )(
√
T 5 + 1). Then

ζA(s) =

∏
a=1,3,5,7(1−

√
3ζa8 · 3−s)

(1− 3−s)(1− 31−s)
,

from which we can see that the genus is 2.

The theorem of Weil was conjectured by Artin in 1934, and proved by Hasse in the case g = 1
around 1934.

It is amazing that the zeta function describes the geometric shape that appears over C.

In 1949, Weil formulated the Weil conjectures. Grothendieck’s new algebraic geometry came about
around 1960-1965. In 1973 the conjectures were proved by Deligne.
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Let X be a non-singular projective algebraic variety over Fq, and d = dim(X). Assume that the
total constant field (i.e. closure of Fq in the function field) is just Fq. Then

ζX(s) =
p1(q−s) · · · p2d−1(q−s)

p0(q−s)p2(q−s) · · · p2d(q−s)
,

where p0(u) = 1− u and p2d(u) = 1− qdu, and

pi(u) =

bi∏
j=1

(1− αiju)

where every |αij | = qi/2. If X = XFq for some X satisfying a certain condition, then bi =
dimQH

i(XC,Q). This number is known as a Betti number. The algebraic geometry of the time did
not have the ability to define cohomology for varieties over finite fields.

Complements for non-singular points

Let k be a field, let f1, . . . , fm ∈ k[T1, . . . , Tn], and let A = k[T1, . . . , Tn]/(f1, . . . , fm), where m ≤ n.

Let p ∈ Spec(A). Assume that the image of the matrix
(
∂fi
∂fj

)
ij

in κ(p) has rank m. Then Ap is a

regular local ring. If p = (T1 − a1, . . . , Tn − an), and fi(a) = 0 for all i = 1, . . . ,m, then for any

subset S ⊂ {1, . . . , n} with #S = m such that the image of
(
∂fi
∂Tj

)
i,j∈S

has rank m, the image of

Ti − ai for i ∈ {1, . . . , n} \ S generates the maximal ideal of Ap.

As an easy application, we can see that the curve f = y2−x3− 1 is non-singular because the matrix(
∂f
∂x ,

∂f
∂y

)
always has rank 1 at any point on the curve.
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Lecture 27 (2013-03-11)
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Lecture 28 (2013-03-13)

On Friday, attendence will be optional. I’ll give the definition of etale cohomology.

Let R be a commutative ring, and let f1, . . . , fm ∈ R[T0, . . . , Tn] be homogeneous polynomials. The
projective scheme over R defined by f1 = · · · = fm = 0 is

⋃n
r=0 Spec(Ar), where

Ar = R[T1, . . . , Tr−1, Tr+1, . . . , Tn]/(f1,r, . . . , fm,r)

and
fi,r = fi(T1, . . . , Tr−1, Tr+1, . . . , Tn).

For r 6= s, we have
Spec(Ar) ∩ Spec(As) = Spec(Ar[

1
xs

]),

which is an open subset of Spec(Ar). Here xs denotes the image of Ts in Ar.

Example 1. We can take R = C[t], and f = T 2
2 T0 − T 2

1 − tT 3
0 . For any a ∈ C, we have a map

C[t]→ C defined by sending t 7→ a, and then we get the projective scheme over C defined by the
image of f , i.e. the projective scheme over C defined by T 2

2 T0 − T 1
1 − aT 3

0 . In general the closed
points of this projective scheme over C are

Xa := {(x, y) ∈ C2 | y2 = x3 + a} ∪ {∞}.

If a = 0, then this becomes y2 = x3, which has a singularity. We can see this problem in the
cohomology:

H1(Xa,Q) ∼= H1(Xa,Q) ∼=

{
Q2 if a 6= 0,

0 if a = 0.

Example 2. An analogous example in the case of R = Z would be f = T 2
2 T0 − T 3

1 − 3T 3
0 .

If R = k is an algebraically closed field, then we can identify

{x = (x0 : · · · : xn) ∈ Pn(k) | f1(x) = · · · = fm(x) = 0} =
n⋃
r=0

max(Ar) ⊂
n⋃
r=0

Spec(Ar),

where
n⋃
r=0

max(Ar) =

{
x ∈

n⋃
r=0

Spec(Ar)

∣∣∣∣∣ {x} is closed

}
.

We can define a condition (∗∗): for any r and any p ∈ Spec(Ar) (you can also use max(Ar) without

changing the condition), the image of
(
∂fi,r
∂Tj

)
1≤i≤m,0≤j≤n,j 6=r

in κ(p) has rank m.

• If R = C[t, 1
t ], and f is the same as in our earlier example, and (∗∗) is satisfied.

• If R = Z[1
6 ], and f is the same as in our earlier example, then (∗∗) is satisfied.

• If R = C[t] and we consider the maps R → C sending t 7→ a and t 7→ b respectively, where
a, b 6= 0, then when (∗∗) is satisfied, we have H1(Xa,Q) ∼= H1(Xb,Q). In general, if (∗∗) is
satisfied and if R is an integral domain finitely generated over C, then H i(Xa,Q) ∼= H i(Xb,Q)
for any ring homomorphisms a, b : R→ C and any i.
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Grothendieck’s étale cohomology

Let k be a separably closed field (this means algebraically closed when char(k) = 0). Let ` be a
prime number, ` 6= char(k). Let X be a scheme of finite type over k, which just means that there
is an open covering X =

⋃n
s=1 Spec(As) where each As is finitely generated over k. Then we have

finite-dimensional vector spaces over Q`, denoted H i
et(X,Q`), for all i ≥ 0.

If k = C, then H i
et(X,Q`) ∼= H i(Xcl,Q)⊗QQ`, where Xcl is the closed points of X with the topology

coming from C.

If R is an integral domain satisfying condition (∗∗) and we have any ring homomorphisms a : R→ k1,
b : R→ k2 where the ki are separably closed fields, then

Hm
et (Xa,Q`) ∼= Hm

et (Xb,Q`),

where Xa is the scheme over k1 defined by the images of the fi in k1[T0, . . . , Tn].

If R is a finite field and (∗∗) is satisfied, then we can express the zeta function as

ζX(s) =
∏
x∈X

x closed point

(
1− 1

#κ(x)s

)−1

=

2 dim(X)∏
i=0

det
(

1− ϕ−1u : H i
et(XFq ,Q`)

)(−1)i−1

where u = q−s. There is an action of

Gal(Fq/Fq) ∼= lim←−
n

Gal(Fqn/Fq) ∼= lim←−
n

Z/nZ.

Let Pi(u) = det(1− ϕ−1u : H i) as in above. Then

ζX(s) =
P1(q−s) · · ·P2d−1(q−s)

P0(q−s) · · ·P2d(q−s)
,

where d = dim(X).

If K is a number field and X is a scheme of finite type over K, then because we have K ↪→ K =
Q ↪→ C, we have

Hm
et (XK ,Q`) ∼= Hm

et (XC,Q`) ∼= Hm(XC cl,Q)⊗Q Q`.

and there is a Galois action of Gal(K/K) on the left.

If we have a donut over C, then we cannot hear the action of the Galois group. We can eat it and
enjoy the taste though.

The Langlands correspondence
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Lecture 29 (2013-03-15)

A sheaf gives information that connects local and global. Cohomology can tell us the difference
between local and global.

The geometric space of a space X is usually considered to be how open sets in X exist. This is not
so good for schemes though, because there are too few open sets.

The right idea for schemes is taking the geometic shape of a scheme X to be how étale morphisms
to X exist. This gives rise to the idea of étale cohomology.

For example, let X = S1 = R/Z. For each open U ⊆ X, define A(U) = C∞ functions from U to R,
and B(U) = C∞ differential forms on U . These form sheaves A,B of abelian groups.

There is a map d : A → B which is a morphism of sheaves of abelian groups. For any open U ⊆ X,
we take d(U) : A(U)→ B(U) to be the map f 7→ df .

It turns out that R = ker(d). Here, R denotes the sheaf defined by taking R(U) = locally constant
functions from U to R for each open U ⊆ X. The sequence

0 R A B 0d

is an exact sequence of sheaves of abelian groups. For sheaves F ,G,H of abelian groups on a space,
we say that

0 F G H 0

is exact when

0 F(U) G(U) H(U) 0

is exact for all open U ⊆ X. For each U and a ∈ H(U), there exists an open cover U =
⋃
Uλ and

bλ ∈ G(Uλ) such that bλ 7→ a|Uλ .

Returning to our example, we have X = S1, and the map A(X)→ B(X) is not surjective because
(for example) there is no C∞ function on X whose differential is dθ. Thus, local and global are
different; dθ locally comes from A, but not globally.

If we have an exact sequence

0 F G H 0

of sheaves of abelian groups on a space, we get a long exact sequence of abelian groups

0 H0(X,F) H0(X,G) H0(X,H) H1(X,F) H1(X,G) H1(X,H) · · ·

where we define H0(X,K) = K(X) for any sheaf K.

In our exact sequence

0 R A B 0d

we get the long exact sequence
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0 R(X) A(X) B(X) H1(X,R) H1(X,A) · · ·d

where H1(X,R) ∼= R. This is because, for any abelian group M and topological space X, the sheaf
M defined by M(U) = locally constant functions U → M satisfies Hm(X, sheaf M) = the usual
Hm(X,M) from algebraic topology.

Let X be a C∞ manifold, or complex analytic space. Let OX be the sheaf of C-valued C∞ functions,
or holomorphic functions respectively. For any n ≥ 1, we get an exact sequence

0 Z/nZ O×X O×X 017→e2πi/n f 7→fn

If X = C \ {0}, and z ∈ O×X(X) denotes the coordinate function, then z is locally (z1/n)n, but
it is not an nth power globally. We have that H1(C \ {0},Z/nZ) = Z/nZ, where zm ∈ O×X(X)
corresponds to m ∈ Z/nZ. If H1(X,Z/nZ) = 0, then all elements of O×X(X) are nth powers. This
is very powerful.

Now we turn the second part of the story. The Zariski topology is good sometimes, but not always.
For example, it is bad that H1(scheme,Z/nZ) = 0 usually, when the scheme has the Zariski topology.
If the sheaf is nice, like OX , then if we have X = U ∪ U ′ with U = Spec(A) and U ′ = Spec(A′)
open subsets of X, then the Mayer-Vietoris sequence is true,

0 OX(X) OX(U)︸ ︷︷ ︸
A

⊕OX(U ′)︸ ︷︷ ︸
A′

OX(U ∩ U ′)︸ ︷︷ ︸
A′′

H1(X,OX) · · ·

and kg = H1(X,OX) = A′′/(A+A′).

Étale morphisms

I will assume that you know the definition of a morphism of schemes. We say that a morphism
f : X → Y of schemes is smooth of relative dimension d when there are open covers X =

⋃
Spec(Bλ)

and Y =
⋃

Spec(Aµ) such that for all λ and µ, f(Spec(Bλ)) ⊆ Spec(Aµ), which corresponds to a
map Aµ → Bλ, such that over Aµ,

Bλ ∼= Aµ[T1, . . . , Tm+d]/(f1, . . . , fm)

such that the image of the matrix
(
∂fi
∂Tj

)
ij

in κ(p) has rank m for any p ∈ Spec(Bλ). Then we say

that a morphism is étale when it is smooth of relative dimension 0.

If f : X → Y is smooth of relative dimension d, then {f−1(y)}y∈Y is a family of non-singular
varieties of dimension d, parametrized by Y .

If X and Y are of finite type over C and f : X → Y is étale, then Xcl → Ycl is locally a
homeomorphism. Here Xcl denotes the closed points of X with the topology coming from the
topology of C. The converse implication is almost true.

Let X be a scheme. We say that something holds ‘‘étale locally’’ when there are étale morphisms
fλ : Uλ → X with

⋃
fλ(Uλ) = X such that it holds on each Uλ.

Thus, if Y = Spec(C[T, 1
T ]), then T is étale locally an nth power, because there is an étale morphism

from X = Spec(C[T 1/n, T−1/n]) to Y . If B = C[T 1/n, T−1/n], then B = A[S]/(Sn − T ). This map
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corresponds to the map Xcl = C \ {0} to Ycl = C \ {0} given by w 7→ wn. However, T not Zariski
locally an nth power (localizing the ring C[T, 1

T ] will never add in an nth root of T ).

We have

holds Zariski locally =⇒ holds étale locally =⇒ holds for classical topology

The second implication is very close to also having ⇐= , but the first implication is very far from
having ⇐= .

Now we can define étale cohomology. We say that F is a sheaf on Xét when we define every F(Y, f)
for étale morphisms f : Y → X, and for any g : Y ′ → Y with

Y ′ Y

X

g

f ′ f

we have a corresponding F(X, f) → F(Y ′, f ′), and we require the analog of the open covering
condition for usual sheaves.

Given a sheaf F of abelian groups on Xét, we define

H0
ét(X,F) = F(X).

There are a variety of ways of defining higher étale cohomology groups, but we can just say that

Hm
ét (X,F) = ExtC(Z,F)

where C is the category of sheaves of abelian groups on Xét.

If X is a scheme over k, a separably closed field, then we define

Hm
ét (X,Q`) =

(
lim←−
n

Hm
ét (X,Z/`nZ)

)
⊗Z` Q`

for any ` 6= char(k), where Z/`nZ denotes the constant sheaf. This is a finite-dimensional Q` vector
space. If k = C, then it is isomorphic to Hm(Xcl,Q)⊗Q Q`.

As an example, let X = Spec(C[T, 1
T−a1 , . . . ,

1
T−am ]). We have a long exact sequence of étale

cohomology

0 Z/nZ(X) O×X(X) O×X(X) H1
ét(X,Z/nZ) · · ·n
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