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Introduction

Math 325 is one of the nine courses offered for first-year mathematics graduate students at the
University of Chicago. It is the first of three courses in the year-long algebra sequence.

These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ
package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the
material here should be credited to the lecturer, not to me.
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Lecture 1 (2012-10-01)

Today we’ll be talking about the Chinese Remainder Theorem and some of its consequences.

Lagrange Interpolation Formula. Let k be a field. Then for any c1, . . . , cn ∈ k, and any distinct
x1, . . . , xn ∈ k, there exists a p ∈ k[t] such that p(xi) = ci for all i.

Proof. The proof comes in three steps.

Step 1: For each i = 1, . . . , n, define

pij(t) =
t− xj
xi − xj

.

Note that

pij(t) =

{
1 if t = xi,

0 if t = xj .

Step 2: For each i = 1, . . . , n, define

pi(t) =
∏
j 6=i

pij(t).

Note that

pi(t) =

{
1 if t = xi,

0 if t = xj for any j 6= i.

Step 3: Define

p(t) =

n∑
i=1

cipi(t).

It is easy to verify that this p satisfies the claimed property.

In this course, rings will always be unital, though they will not necessarily be commutative.

Given a ring A and two-sided ideals I1, . . . , In ⊂ A, there are some important ways we can create
new two-sided ideals.

The sum of the Ii is defined by

I1 + · · ·+ In = {x1 + · · ·+ xn | xi ∈ Ii}.

The product of the Ii is defined by

I1 · · · In = {
∑

x1 · · ·xn | xi ∈ Ii}.

The intersection of the Ii is just their intersection as subsets of A.

Note that we always have I1 · · · In ⊆ I1 ∩ · · · ∩ In.

We can re-express the Lagrange Interpolation Formula as follows:

Lagrange Interpolation Formula. Let k be a field, and let A = k[t]. For any c1, . . . , cn ∈ k, and
any distinct x1, . . . , xn ∈ k, let Ii = (t− xi). There exists a p ∈ A such that p− ci ∈ Ii for all i.

Note that

the xi are distinct ⇐⇒ for any i 6= j, −(t− xi) + (t− xj) = xi − xj 6= 0

⇐⇒ for any i 6= j, Ii + Ij = A.
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Chinese Remainder Theorem. Let A be a not-necessarily-commutative ring, and I1, . . . , In
two-sided ideals of A such that Ii + Ij = A for all i 6= j. Then

1. For any c1, . . . , cn ∈ A, there exists p ∈ A such that p− ci ∈ Ii for all i.

2. If A is commutative, then I1 · · · In = I1 ∩ · · · ∩ In.

Proof of Part 1. The proof comes in three steps.

Step 1: For any i 6= j, we have that Ii + Ij = A. Thus, for any i 6= j there are some qij ∈ Ii and
pij ∈ Ij such that qij + pij = 1. Note that 1− pij = qij ∈ Ii.

Step 2: For each i, let

pi =
∏
j 6=i

pij ∈
∏
j 6=i

Ij ⊂ Ij for all j 6= i.

We claim that 1− pi ∈ Ii. This follows from observing that

pi =
∏
j 6=i

(1− qij) = 1 + (terms involving the qij)

and that for all j 6= i, qij ∈ Ii.

Step 3: Let

p =
n∑
i=1

cipi.

Checking that this p works, we see that for any i,

p− ci = ci(1− pi) +
∑
j 6=i

cjpj ,

and (1− pi) ∈ Ii and each pj ∈ Ii by Step 2, so that p− ci ∈ Ii for all i.

Proof of Part 2. We proceed by induction. For the case of n = 2, note that because I1 + I2 = A,
there are some u1 ∈ I1, u2 ∈ I2 such that u1 + u2 = 1. For any a ∈ I1 ∩ I2, we then have

a = au1 + au2.

Because a ∈ I2 and u1 ∈ I1, we have that au1 ∈ I2I1. Because a ∈ I1 and u2 ∈ I2, we have that
au2 ∈ I1I2. Now using the assumption that A is commutative, we have that I2I1 = I1I2 and
therefore a ∈ I1I2. This proves that I1 ∩ I2 ⊆ I1I2, and hence I1 ∩ I2 = I1I2.

Now for the inductive step. By the inductive hypothesis, we know that

I2 ∩ · · · ∩ In = I2 · · · In,

and therefore
I1 ∩ (I2 ∩ · · · ∩ In) = I1 ∩ (I2 · · · In).

We would like to show that
I1 ∩ (I2 · · · In) = I1I2 · · · In.

This will follow from the n = 2 case, provided that we can show that

I1 + (I2 · · · In) = A.
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Recall that in the proof of part 1, we constructed a p1 ∈ A such that 1− p1 ∈ I1 and

p1 ∈
∏
j 6=i

Ij = I2 · · · In.

Then the fact that
1 = p1 + (1− p1)

implies that 1 ∈ I1 + (I2 · · · In), and hence I1 + (I2 · · · In) = A.

Because the Ii are two-sided ideals, we can quotient the ring A by them. Define the homomorphisms
πi : A→ A/Ii to be the quotient maps, so that ker(πi) = Ii.

Define π to be the composition

π : A
diag−−−→

n⊕
i=1

A
⊕πi−−−→

n⊕
i=1

A/Ii,

so that
π(a) = (a mod I1, . . . , a mod In).

Clearly, ker(π) =
⋂

ker(πi) =
⋂
Ii.

We can now restate the Chinese Remainder Theorem in a more abstract form.

Chinese Remainder Theorem. Let A be a not-necessarily-commutative ring, and I1, . . . , In
two-sided ideals of A such that Ii + Ij = A for all i 6= j. Then the map π is surjective, and induces
an isomorphism

π : A/(I1 ∩ · · · ∩ I2)→
n⊕
i=1

A/Ii.

Proof. Because we induced the map π by quotienting out by the kernel of π, we have that ker(π) = 0.
Therefore, π is injective. Also, π is surjective, because for any choice of ci ∈ A/Ii for each i, there is
some a ∈ A such that a mod Ii = ci by the Chinese Remainder Theorem.

Now we will review some basics about PIDs.

A ring A is a PID when

1. A is commutative,

2. A has no zero-divisors, and

3. Any ideal of A is principal.

Examples of PIDs include the ring Z, and the polynomial ring k[t] over a field k.

Let A be a PID. For any a, b ∈ A \ {0}, we say that d ∈ A is a gcd of a and b when d | a and d | b,
and when for any g ∈ A such that g | a and g | b, we also have g | d.

The following is a fundamental result about PIDs.

Theorem. Let A be a PID. For any a, b ∈ A \ {0},

Aa+Ab = A gcd(a, b).
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Proof. Since A is a PID, we know the ideal Aa+Ab is equal to Ad for some d. Note that

a ∈ Aa ⊂ Aa+Ab = Ad

implies that d | a. By symmetry, d | b as well. If g | a and g | b, then a, b ∈ Ag, so that

Ad = Aa+Ab ⊂ Ag,

which implies that d ∈ Ag and hence g | d.

Corollary. Let A be a PID. Then

gcd(a, b) = 1 ⇐⇒ Aa+Ab = A ⇐⇒ there exist u, v ∈ A such that au+ bv = 1.

Corollary. Let A be a PID, and let a = a1 · · · an where gcd(ai, aj) = 1 for all i 6= j. Then

A/(a) ∼= A/(a1)⊕ · · · ⊕A/(an).
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Lecture 2 (2012-10-03)

Today we’ll be talking about modules.

In a sentence, a module is a vector space over a ring. More precisely, let A be a ring. Then a (left)
A-module is an abelian group (M,+) with an action map A×M →M satisfying

1. 1Am = m,

2. (a1 + a2)m = a1m+ a2m,

3. a(m1 +m2) = am1 + am2,

4. (ab)m = a(bm).

N is a submodule of M if N is an A-stable subgroup of M . For any submodule N , we can construct
the quotient module M/N .

A map f : M → N is an A-module morphism if it is A-linear, i.e. f(m1 + m2) = f(m1) + f(m2)
and f(am) = af(m).

Given an A-module morphism f : M → N , then ker(f) = f−1(0) is a submodule of M , and im(f)
is a submodule of N . An isomorphism is a bijective A-module morphism.

Examples.

1. Let A = Z. A Z-module is just an abelian group. For any abelian group M , any k ∈ Z≥0 and
m ∈M , we set

km = m+ · · ·+m︸ ︷︷ ︸
k times

.

2. Let A = k a field. Then k-modules are just k-vector spaces.

3. Let A = k[x] where k is a field. Then an A-module is just a k-vector space V equipped with a
k-linear map x̂ : V → V .

4. Let A = k[x]/(x4 − 1). Then an A-module is just a k-vector space V equipped with a k-linear
map x̂ : V → V satisfying x̂4 = idV .

5. Let A = k[x, y]. Then an A-module is just a k-vector space V equipped with two commuting
k-linear maps x̂, ŷ : V → V .

6. Let A = k〈x, y〉. Then an A-module is just a k-vector space V equipped with two arbitrary
k-linear maps x̂, ŷ : V → V .

Operations on modules

1. The direct sum of modules M1, M2 is defined to be

M1 ⊕M2 = {(m1,m2) | m1 ∈M1,m2 ∈M2}.

The action of A is given by a(m1,m2) = (am1, am2). For any collection of A-modules {Mi}i∈I ,
we can form ⊕

i∈I
Mi = {(mi ∈Mi)i∈I | mi = 0 ∈Mi for almost all i}.
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We define
Mn = M ⊕ · · · ⊕M︸ ︷︷ ︸

n times

.

2. The sum of submodules Mi ⊆M is defined to be∑
i∈I

Mi = {mi1 + · · ·+mij | mij ∈Mij}.

3. The submodule generated by m ∈M is defined to be

Am = {am | a ∈ A}.

More generally, if {mi}i∈I ⊂M , then ∑
i∈I

Ami ⊂M

is the submodule generated by the mi. We say that M is finitely generated if there exist
m1, . . . ,mk ∈M such that M = Am1 + · · ·+Amk.

Free modules

Note that A is an A-module via left multiplication. Modules of the form⊕
i∈I

A

are called free modules. We say that An is a free module of rank n.

An important observation to make is that there are modules which are not free. For example, we can
choose A = k[t] and then let V be any finite-dimensional k-vector space, with x̂ being an arbitrary
linear map V → V .

Definition. We say that {mi ∈M}i∈I is a basis of M if every element of M can written uniquely
in the form m =

∑
aimi (this is a finite sum), where the ai ∈ A. For example, if M =

⊕
i∈I A, then

the standard basis for M is {1i ∈ A | i ∈ I}.

However, this is not a very general definition, because in fact an A-module has a basis {mi}i∈I if
and only if M is free; we can make an isomorphism⊕

i∈I
A
∼=−−→M

defined by sending (ai)i∈I to
∑
aimi.

Note that M is finitely generated if and only if there is a surjection An →M for some free module
of finite rank An.

Let {m1, . . . ,mn} be a basis of M . Let |aij | ∈Mn(A), and put

m′i =
n∑
j=1

aijmj .

Then {m′i} is a basis for M if and only if |aij | is invertible.
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Morphisms of modules

Let A be a ring. We define

HomA(M,N) = {morphisms M → N}.

Note that HomA(M,N) is an abelian group (under pointwise addition of functions). If A is commu-
tative, then HomA(M,N) has a natural A-module structure: for a ∈ A and f ∈ HomA(M,N), we
define af ∈ HomA(M,N) by (af)(m) = a ·f(m). When A is not commutative, then the requirement
that module morphisms satisfy g(bm) = b · g(m) will fail for af when a is not in the center of A.

For any module M , we have that HomA(A,M) ←→ M , via f 7→ f(1A) and [fm : x 7→ xm] ←[ m.
This is not an isomorphism of modules unless A is commutative, because otherwise HomA(A,M)
doesn’t have the structure of a left A-module.

For any A-module M , we define EndA(M) = HomA(M,M). This is a ring with the multiplication
being composition.

Example. EndA(A) ∼= Aop as rings, with a ∈ A←→ fa:

fba = fa ◦ fb : x 7→ xba,

and in Aop, we have a ∗ b = ba (we are considering A as a left A-module, so its endomorphisms are
the right-multiplication maps fa(x) = xa; left-multiplication is not an A-module homomorphism
from A to itself). When A is commutative, then Aop ∼= A. If a 7→ a∗ is an anti-involution, then we
get an isomorphism A→ Aop, but this can be non-trivial; as we’ve seen with the quaternions, there
can be an anti-involution of a non-commutative ring A.

Let M be an A-module. Consider an f ∈ HomA(Mp,M q), say mappingm1
...
mp

 q×p matrices−−−−−−−−−→

m
′
1

...
m′q


What kind of things are in the entries of this matrix? Elements of EndA(M). We have

EndA(Mp) ∼= Mp(EndA(M))

so for example
EndA(Ap) ∼= Mp(A

op).

Note that this means there is a difference between a matrix that represents changing bases and a
matrix that represents a map of modules.

Example (not from class). If we have a free module An and three different bases for it, {ei},
{vi}, and {wi} (these need not have the same cardinality), with aij , bij , cij defined by vi =

∑
aijej ,

wi =
∑
bijvj , and wi =

∑
cijej , then

(cij) = (bij)(aij)

where, when doing matrix multiplication, the elements of matrices are to be multiplied as elements
of A. However, given a module homomorphism f : An → An, we represent it as a matrix (fij) where
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fij ∈ EndA(A) ∼= Aop is the map obtained by restricting the domain and codomain of f to the ith
and jth factors, respectively, and the matrix representing g ◦ f satisfies

((g ◦ f)ij) = (gij)(fij)

where now, when doing matrix multiplication, the entries of the matrices are to be multiplied as
elements of Aop.

Some final remarks: a submodule M ⊂ A is just a left ideal of A. We say that a submodule M is
cyclic if there is an m ∈M such that M = Am. Cyclic modules are of the form M ∼= A/J where J
is a left ideal in A. This is because A/J = A1, and if M = Am, then we can define a surjective map
f : A→M by a 7→ am, so that M ∼= A/ ker(f).
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Lecture 3 (2012-10-05)

Today we’ll be talking about modules over PIDs.

Proposition. Let M be a free module of rank m, let L be a submodule of rank L. Then there exists
a basis m1, . . . ,mn of M and d1, . . . , dk ∈ A for some k ≤ n, such that the elements d1m1, . . . , dkmk

form a basis of L. In particular, L is free, with rank(L) = k ≤ rank(M).

Theorem. Any finitely generated module over a PID A is a finite direct sum of cyclic modules of
the form

M =

n⊕
i=1

A/(pdii )

where each pi is either zero, or else is a prime in A. Moreover, the collection of pairs

{(p1, d1), . . . , (pk, dk)}

(counted with multiplicities) is uniquely determined by M up to permutations and replacing any pi
by piui where ui ∈ A is a unit.

Proof. First, note that the proposition implies the existence part of the theorem.

Let N be a finitely generated A-module. We know there exists a surjection f : An → N , so that
N ∼= An/ ker(fn). Now let M = An and L = ker(f).

In the basis m1, . . . ,mn, we have

M =
1
A⊕ · · ·⊕

k
A ⊕ · · ·⊕

n
A .

L = d1A⊕ · · · ⊕ dkA

and therefore
N = M/L = A/d1A⊕ · · · ⊕A/dk ⊕A⊕ · · · ⊕A.

It suffices to show that any A/dA can be decomposed in a direct sum as in the theorem. We write
d = pk1

1 · · · pkrr , where pi 6= pj for i 6= j. By the Chinese Remainder Theorem,

A/dA = A/(pr11 · · · p
kr
r ) ∼=

r⊕
i=1

A/(pkii ).

Corollary. Any finitely generated abelian group is isomorphic to

Z` ⊕
n⊕
i=1

Z/(pdii )

where the pi ∈ Z are some primes.

Proof. Simply apply the theorem in the case A = Z.

Now let A = k[x], and let f = xn + cn−1x
n−1 + · · ·+ c0 ∈ k[x], f 6= 0. Let M = k[x]/(f). Then we

can choose 1, x, . . . , xn−1 as a k-basis of M . Multiplication by x sends

1 −→ x −→ x2 −→ · · · −→ xn−1 −→ xn = −(cn−1x
n−1 + · · ·+ c0)
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(because f = 0 in M). Thus, the multiplication by x operator has matrix

0 1 0
0 1 0

. . .
. . . 0

1 0
0 0

−c0 −c1 · · · −cn−1


(this may or may not be reversed depending on how you think about your vectors).

Corollary. For any field k, a matrix X ∈ Mn(k) is conjugate to a block diagonal matrix with
Frobenius blocks.

Proof. For any associative algebra A and X ∈ A, we can map k[x]→ A by f 7→ f(X). In our case,
we get a homomorphism k[x]→Mn(k) by sending x to X. This gives an action of k[x] on kn, so
that we get a k[x]-module structure on kn. Now apply the theorem.

Now suppose that our field k is algebraically closed. Then f ∈ k[x] is a prime power if and only if it
is of the form f = (x− z)d for some z ∈ k and d ≥ 1.

Corollary. Any k[x]-module which is finite-dimensional over the algebraically closed field k is
isomorphic, as a k[x]-module, to

n⊕
i=1

k[x]/(x− zi)di

for some z1, . . . , zn ∈ k, and di > 0.

Note that we cannot have k[x]/(0) ∼= k[x] because we are considering only those k[x]-modules that
are finite-dimensional as k-vector spaces.

Now let’s see how this works with matrices. The k[x]-module k[x]/(x− z)d has as a k-basis

1, (x− z), . . . , (x− z)d−1.

Multiplication by x acts by

(x− z)i −→ x(x− z)i = (x− z)i+1 + z(x− z)i.

Thus, the matrix for multiplication by x is
z 1

z 1
. . .

. . .

1
z


Corollary. If k is algebraically closed, then any matrix X ∈Mn(k) is conjugate to one in Jordan
normal form.

Suppose that A = A1⊕ · · ·⊕An is a direct sum of rings. Let Mi be an Ai-module. Then M =
⊕
Mi

has a natural A-module structure, via

(a1, . . . , an)(m1, . . . ,mn) = (a1m1, . . . , anmn).
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Lemma. Any module over A = A1 ⊕ · · · ⊕An has the form M =
⊕
Mi for some Ai modules Mi.

Proof. We have orthogonal idempotents in A, i.e. elements ei ∈ A such that

• 1A = e1 + · · ·+ en,

• e2
i = ei,

• eiej = 0 if i 6= j, and

• the ei are central in A.

Specifically, we have the identity elements ei = 1Ai . Now, given an A-module M , put Mi = eiMi.
For any m ∈M , we have

m = 1A ·m =
∑

eim

so that M =
∑
Mi. If 0 =

∑n
i=1 eim holds in M , then eim = 0 for all i, because for each j 6= i,

0 = ej · 0 = ej

n∑
i=1

eim =

n∑
i=1

ejeim = e2
jm = ejm.

Let X be a finite set, k is a field. Let A = k{X} = k-valued functions on X. We see that

k{X}
∼=−−→

⊕
#X

k

via the map sending f to ⊕x∈Xf(x). Our lemma says that a module over k{X}, for X finite, is the
same as a direct sum of #X k-vector spaces.
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Lecture 4 (2012-10-08)

Today we’ll talk about simple and semisimple modules.

Simple modules

Definition. A module is simple if it is non-trivial and has no submodules except 0 and itself.

Example. If our ring is a field k, then a k-module M is simple if and only if M is cyclic, which is
the case if and only if dimk(M) = 1.

Note that an A-module is simple if and only if M = Am for any non-zero m ∈M .

Definition. A (left) ideal J ( A is called maximal if, for any ideal I ⊇ J , we have A = I.

Lemma. M is a simple A-module if and only if M ∼= A/J for some maximal (left) ideal J of A.

Proof. There is a bijection between left submodules I/J ⊆ A/J and ideals J ⊆ I ⊆ A:

A A/J

I I/J

J 0

⊆
⊆

⊆
⊆

Proposition. Any (left) ideal I ( A is contained in a maximal ideal.

Proof. Zorn’s lemma.

Corollary. Any cyclic module has a simple quotient.

Warning. If N is a submodule in M , it isn’t necessarily true that there exists a maximal submodule
N ′ of M with N ⊆ N ′.

Exercise. Show that (Q/Z,+) has no maximal subgroups.

Theorem (Schur’s lemma). If M , N are simple A-modules, then any morphism f : M → N is
either 0 or is an isomorphism.

Proof. Assume that f 6= 0. Then im(f) 6= 0 is a submodule in N , hence im(f) = N , i.e. f is
surjective. Because ker(f) 6= M , we must have ker(f) = 0, hence f is injective.

Corollary. For a simple module M , the ring EndA(M) is a division ring.

Proof. Every f 6= 0 in EndA(M) is an isomorphism.

Corollary. If A is commutative, then an ideal I ⊂ A is maximal if and only if A/I is a field.

Proof. If I is maximal, then A/I is a simple A-module, so that EndA(A/I) ∼= A/I is a division ring,
and hence a field.

If A/I is a field, then A/I is generated by every non-zero element, hence A/I is simple, hence I is
maximal (by our lemma).
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Corollary. If A is commutative, and n 6= m, then An 6∼= Am as A-modules.

Proof. Pick a maximal ideal I ⊂ A. If M is an A-module, we can consider M/IM as an A/I-module.
In particular we get

(A/I)n ∼= An/I ·An ∼= Am/I ·Am ∼= (A/I)m

but these are vector spaces over A/I, so we must have m = n.

This is false for non-commutative rings in general. A good counterexample can be obtained by taking
an infinite dimensional vector space V over a field k, and letting A = Endk(V ). Then An ∼= A for
all n ≥ 1.

Semisimple modules

Definition (and Proposition). For M an A-module, the following are equivalent:

1. M ∼= ⊕ simple modules

2. M =
∑

simple submodules

3. M is completely reducible, i.e. for any submodule N ⊂ M , there is an N ′ ⊂ M such that
N ⊕N ′ = M .

Proof. Zorn’s lemma.

If (1)-(3) hold then M is called semisimple.

Examples. If A = k is a field, then any module is semisimple.

If A is a division ring, then any module is semisimple.

If A = Mn(D) where D is a division ring, then any A-module is semisimple.

Corollary. Any direct sum, quotient, or submodule of a semisimple module is semisimple.

Proof. The case of submodules follows from (3). The case of quotients follows from (2). The case of
direct sums follows from (1).

Notation. If M =
⊕

iMi, where the Mi’s are simple, then we set for a simple L

[M : L] = #{i |Mi
∼= L}.

It’s not necessarily clear this is well-defined; an alternative is to write M as

M =
⊕
L∈SA

L[M :L]

where SA is the set of isomorphism classes of simple A-modules.

For any A-modules M and N , the ring EndA(N) acts (on the right) by composition on HomA(M,N).

Let L be a simple module. Then DL := EndA(L) is a division ring by Schur’s lemma, so that
HomA(M,L) is a DL-module.

Proposition (Multiplicity formula). For a semisimple module M ,

[M : L] = rankDL(Hom(M,L)).
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Proof. Assume M =
⊕
Mi, where Mi are simple. Then

HomA(M,L) = HomA

(⊕
Mi, L

)
=
⊕

HomA(Mi, L) ∼=
⊕

{i|Mi
∼=L}

EndA(L) = D
[M :L]
L .

Let M = Lr11 ⊕ · · · ⊕ Lrnn where the Li are simple and Li 6∼= Lj . Then

EndA(M) = Hom(M,Lr11 )⊕ · · · ⊕Hom(M,Lrnn )

= Hom(M,L1)r1 ⊕ · · · ⊕Hom(M,Ln)rn

= Mr1(DL1)⊕ · · · ⊕Mrn(DLn).
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Lecture 5 (2012-10-10)

A ring A is said to be semisimple when any A-module is semisimple.

Theorem (Wedderburn Theorem). For a ring A, the following conditions are equivalent:

1. A is a finite direct sum
A = Mr1(D1)⊕ · · · ⊕Mrn(Dn)

where the Di are division rings.

2. A is semisimple.

3. The rank 1 free A-module is semisimple.

4. Any left ideal in A has the form Ae where e2 = e ∈ A.

5. A = Ae1 + · · ·+Aen where e2
i = ei and eiej = 0 for i 6= j, and each Aei is a simple A-module.

(1 ⇒ 2). The fact that any module over Mr(D) is semisimple is something that is from your
homework. Now note that if A = A1 ⊕ · · · ⊕ An, then an A-module is equivalent to an n-tuple
{Mi} where Mi is an Ai-module, so that because each Mri(Di) is semisimple, so is Mr1(D1)⊕ · · · ⊕
Mrn(Dn).

(2 ⇒ 3). Clear.

(3 ⇒ 4). A is completely reducible as an A-module, so for any left ideal I ⊂ A, there exists a left
ideal I ′ ⊂ A such that A = I ⊕ I ′. Thus, there are e ∈ I and e′ ∈ I ′ such that 1 = e+ e′. Now note
that for any x ∈ I,

x︸︷︷︸
∈I

= x · 1 = x · e︸ ︷︷ ︸
∈I

+ x · e′︸ ︷︷ ︸
∈I′

which implies that x · e′ and x = xe. Thus, I is of the form Ae, and e = e2.

(4 ⇒ 5). Since any left ideal I ⊂ A has the form I = Ae where e2 = e, we have for any ideal Ae
that A = Ae⊕A(1− e). Thus, A is completely reducible.

This implies that A =
⊕
Li, a possibly infinite direct sum of simple A-modules. But then 1 =

e1 + · · ·+ en, hence x = x · 1 = xe1 + · · ·+ xen where xei ∈ Li. Thus A = L1 ⊕ · · · ⊕ Ln.

(5 ⇒ 1). Reexpressing the statement of 5, we have that

A =

m⊕
j=1

Lrii , Li 6∼= Lj for i 6= j.

Therefore

Aop = EndA(A) =

m⊕
j=1

End(L
rj
j ) =

m⊕
j=1

Mrj (EndA(Li))

and by Schur’s lemma, Di = EndA(Li) is a division ring. But this gives a decomposition of Aop, not
A. To fix this, note that

A = (Aop)op =

m⊕
j=1

Mrj (Dj)
op

that Mr(D)op = Mr(D
op), and that Dop is a division ring when D is.
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Corollary. A commutative ring A is semisimple if and only if it is a finite direct sum of fields.

Proof. There is no way to get a commutative ring if any of the ri > 1, nor if any of the Dj are
non-commutative division algebras.

From this point forward, let A be a k-algebra where k is a field.

Definition. An element a ∈ A is called algebraic if there is some monic p ∈ k[t] such that p(a) = 0.

Examples.

• Any idempotent or nilpotent element is algebraic.

• If dimk(A) <∞ then any a ∈ A is algebraic, because 1, a, a2, . . . cannot be linearly independent
over k. Thus, there exist some λi ∈ k such that

∑
λia

ni = 0.

Let a ∈ A be an algebraic element. Consider the k-algebra homomorphism j : k[t] → A defined
by j(f) = f(a). Because k[t] is a PID, we have that ker(j) = (pa) is a principal ideal. The monic
polynomial pa is called the minimal polynomial for a. Note that we get an induced homomorphism
j : k[t]/(pa) ↪→ A.

Definition. For any a ∈ A, we define

spec(a) = {λ ∈ k | λ− a is not invertible}.

Examples.

• If A = k{X}, then spec(a) = {the values of a}.

• If k is algebraically closed and A = Mn(k), then for an a ∈ A, spec(a) = {eigenvalues of a}.

Lemma. Let a ∈ A be an algebraic element with minimal polynomial pa ∈ k[t]. Then

λ− a is not invertible ⇐⇒ λ− a is a zero divisor ⇐⇒ pa(λ) = 0.

Thus, spec(a) = {roots of pa}.

Proof. First, we make a general remark: for any λ ∈ k, we have

p(t)− p(λ) = q(t)(λ− t),

and because deg(q) < deg(p), we must have q /∈ (p), hence q(a) 6= 0.

We have an injective homomorphism j : k[t]/(p) ↪→ A where we send f to f(a). If p(λ) = 0, then

0 = p(a) = q(a)(λ− a)

implies that λ− a is a zero-divisor. Clearly, if λ− a is a zero-divisor, it is not invertible.

Now we want to show that λ−a is not invertible =⇒ p(λ) = 0. Assume for the sake of contradiction
that p(λ) 6= 0; then

p(a)︸︷︷︸
=0

− p(λ)︸︷︷︸
6=0

= q(a)(λ− a)

demonstrates that λ− a is invertible.
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Lecture 6 (2012-10-12)

Last time, we proved that for an algebraic element a ∈ A in an algebra,

spec(a) = {roots of the minimal polynomial pa ∈ k[t]}.

Let an = 0, so that a is nilpotent. Then pa = tn, so that spec(a) = {0}. This implies that λ− a is
invertible for any λ 6= 0. Let’s see if we can find an explicit inverse.

(λ− a)−1 = [λ(1− λ−1a)]−1

= λ−1(1− λ−1a)−1

= λ−1(1 + (λ−1a) + (λ−1a)2 + · · · )

=
∞∑
i=0

λ−(i+1)ai

=
n−1∑
i=0

λ−(i+1)ai

The intermediate steps aren’t really allowed, but it gets us the right answer.

From now on we consider k-algebras over an algebraically closed field k.

Proposition. Let A be a finite dimensional k-algebra.

1. spec(a) 6= ∅ for any a ∈ A.

2. If A is a division algebra, then A ∼= k.

Proof. For part 1, note that dim(A) < ∞ implies that any a ∈ A is algebraic, so that spec(a) =
{roots of pa}, which is non-empty because k is algebraically closed.

For part 2, note that for any k-algebra, we have an inclusion k ↪→ A by λ 7→ λ · 1A. Suppose that
a ∈ A \ k. Then for any λ ∈ k, we have that λ− a 6= 0, hence λ− a is invertible for all a ∈ k, hence
spec(a) = ∅; but this contradicts part 1.

Proposition (Schur lemma for algebras). Let M be a finite dimensional (over k) simple A-module.
Then EndA(M) = k, i.e. any endomorphism f : M →M is of the form λ · idM for some λ ∈ k.

Proof. We know that EndA(M) is a division algebra. The A-action on M is the same as a map
A→ Endk(M), which is a finite dimensional division algebra. Let A′ = im(A), so dim(A′) <∞ and
M is a simple A′-module, which implies EndA′(M) = k, but EndA(M) = EndA′(M).

Corollary.

1. The center Z(A) of A acts by scalars in any finite-dimensional simple A-module.

2. If A is commutative1, then any simple A-module has dimension 1 over k.

Proof. Let M be a finite-dimensional simple A-module. Then consider the action map act : A→
Endk(M). If z ∈ Z(A), then act(z) ∈ EndA(M) = k by the Schur lemma for algebras. Part 1
follows.

1A reader points out that A also needs to be finite dimensional; otherwise a transcendental field extension of k
would provide a counterexample.
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If A = Z(A), then any element of A acts on M by scalars, so any vector subspace N ⊆ M is
A-stable. Thus, dimk(M) = 1.

Let SA be the isomorphism classes of simple A-modules.

Let M be a finite direct sum of simple modules, so

M ∼=
⊕
L∈SA

Ln(L)

For any A-module N , we have an evaluation map ev : HomA(N,M)⊗kN →M , defined by sending
f ⊗ n to f(n).

Now M is a finite direct sum of simple modules, so we get an evaluation map⊕
L∈SA

HomA(L,M)⊗k L
∼=−−→M

by the Schur lemma.

Theorem (Wedderburn Theorem for Algebras). A is a finite-dimensional semi-simple k-algebra if
and only if

A ∼= Mr1(k)⊕ · · · ⊕Mrn(k).

Proof. By Wedderburn’s theorem, we have

A ∼= Mr1(D1)⊕ · · · ⊕Mrn(Dn)

where the Di are division rings. The fact that dimk(A) <∞ implies dimk(Di) <∞ which implies
that Di = k.

Corollary. Let A be a finite-dimensional semisimple algebra. Then

1. SA is a finite set and any M ∈ SA is finite dimensional over k. Moreover, [A : L] = dim(L)
for all L ∈ SA.

2. dim(A) =
∑

L∈SA dim(L)2

Proof. Any simple A-module is cyclic, so that it is isomorphic to A/J for some J . We have
dimk(A/J) ≤ dimk(A) <∞, so any simple A-module is finite dimensional.

Note that A satisfies a universal property, HomA(A,L)
∼=−→ L is an isomorphism of k-vector spaces.

We can decompose A =
⊕

L∈SA L
nL . We get that, for any simple L′,

HomA(L′, A) = HomA

(
L′,

⊕
L∈SA

LnL
)

=
⊕
L∈SA

Hom(L′, L)nL =
⊕
L∈SA

(
k if L = L′

0 if L 6= L′

)nL
= knL′ .

By the same argument we also have

HomA(A,L′) = HomA

( ⊕
L∈SA

LnL , L′
)

=
⊕
L∈SA

Hom(L,L′)nL =
⊕
L∈SA

(
k if L = L′

0 if L 6= L′

)nL
= knL′ .

Because HomA(A,L) ∼= L as k-vector spaces, we therefore have that dim(L′) = dim(HomA(A,L′)) =
nL′ , and hence

dim(A) =
∑

nL dim(HomA(L,A)) =
∑

nL dim(L) =
∑

dim(L)2.
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Lecture 7 (2012-10-15)

Integration on topological groups

Let X be a locally compact topological space, i.e. any point has a compact neighborhood.

Let C(X) be the space of continuous functions X → C. Let Cc(X) be the subspace of C(X)
consisting of functions with compact support.

An integral on X is a linear functional
∫

: Cc(X)→ C satisfying

• If f(x) ≥ 0 for all x, then
∫
f ≥ 0, and

∫
f = 0 ⇐⇒ f = 0.

• Continuity: for every compact K ⊆ X, there exists a constant CK ≥ 0 such that for all
f ∈ Cc(X) with supp(f) ⊆ K, |

∫
K f | ≤ CK ·max

x∈K
|f(x)|.

If X is actually compact, then clearly Cc(X) = C(X) and vol(X) =
∫

1. Moreover, Fubini’s theorem
guarantees that ∫

Y

(∫
X
f(x, y) dx

)
dy =

∫
X

(∫
Y
f(x, y) dy

)
dx.

A topological group G is a group that is a topological space such that multiplication m : G×G→ G
and inversion i : G→ G are continuous.

Examples. (R,+), (C×, ·), (S1, ·), (GLn(R), ·), (U(Rn), ·)

When we say that a topological group G acts on a topological space X, we require that the action
map is continuous.

Given a function f : X → C and a g ∈ G, define g∗f(x) = f(g−1x). We say that an integral on X
is G-invariant if

∫
X g
∗(f) =

∫
X f for all f ∈ Cc(X) and for all g ∈ G. Alternatively, when thinking

about measures, we say that a measure µ is G-invariant if for all S ⊆ X and g ∈ G, we have
vol(gS) = vol(S).

Theorem (Haar). Any locally compact topological group G has a left-invariant integral which is
unique up to a constant factor.

Examples. Some examples of integrals which can be obtained this way:

1. (R,+) with dx,

2. (R+, ·) with dµ = dx
x ,

3. (S1, θ) with dθ.

Using differential forms (on Lie groups say), this theorem is obvious.

Note that a left-invariant integral is not necessarily right-invariant.

Proposition. If G is a compact group, then G is unimodular (i.e. a left-invariant integral on G is
automatically right-invariant).

Proof. Let
∫
L be a left-invariant integral on a compact group G. Let f ∈ C(G). Then define

φ : G→ C by φ(g) =
∫
L f(xg)dx. Notice that φ(g) is also a left-invariant integral. Therefore, there
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is a constant c(g) ∈ C such that ∫
L
f(xg)dx = c(g)

∫
L
f(x).

Then c(g) has the following properties,

1. g → c(g) is continuous on G (to see this, just plug in f = 1).

2. c(g) > 0 for all g.

3. g → c(g) is a group homomorphism into the multiplicative group of R.

Thus, c(g) = 1 since the image of c : G→ R+ is a compact subgroup of R+, hence 1.

The group algebra

If G is a finite group and k is a field, then kG is a k-vector space with basis g ∈ G and with obvious
multiplication. Alternatively, the group algebra k{G} is the set of functions G→ k with convolution
and addition, i.e.

(φ ∗ ψ)(x) =
∑
g∈G

φ(xg−1)ψ(g)

Proposition. For a finite group G, k{G} = kG.

Proof. The elements 1g form a basis of k{G}, and 1g ∗ 1h = 1gh.

Now let G be a locally compact topological group with left-invariant integral
∫

, and let k be a
topological field. For φ, ψ ∈ Cc(G), define2

(φ ∗ ψ)(x) =

∫
G
φ(xy−1)ψ(y)dy.

Comments.

1. Any discrete group is locally compact (discrete topology), but then Cc(G) only includes
functions with finite support.

2. If G is not discrete, then 1g is not a continuous function.

3. If G is discrete (e.g. if G is finite), the unit of the group algebra is the function 1e. If G is not
discrete, then in fact there is no unit!

2A reader suggests that if G is not unimodular, convolution should be defined using φ(y)ψ(y−1x), not the other
way around, making the action on a representation a left action.
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Lecture 8 (2012-10-17)

Let V be a vector space over k.

Definition. A representation of a group G is a group homomorphism ρ : G → GL(V ). This is
equivalent to a linear G-action on V .

Observe that this is also equivalent to specifying a kG-module structure on V . If ρ is a group
representation of G, then we declare that a =

∑
g∈G cgg ∈ kG will act on V via

ρ(a) =
∑
g∈G

cgρ(g) : V → V

or in other words, for all v ∈ V ,

ρ(a)v =
∑
g∈G

cgρ(g)v.

(Note that sometimes we’ll just write av instead of ρ(a)v). Using this view, we have the notions of
a subrepresentation, quotient representation, and direct sum of representations. An ‘‘irrep’’ is a
simple kG-module, and an ‘‘intertwiner’’ is a morphism of kG-modules.

Theorem (Schur Lemma for Representations). Given an algebraically closed field k, let V1, V2 be
finite-dimensional irreps. Let f : V1 → V2 be an intertwiner. If V1 6∼= V2, then f = 0, and if V1

∼= V2,
then f = λ · idV for some λ ∈ k.

Proof. Apply the Schur lemma for algebras to kG.

From now on let k = C. Let V be a vector space over C with a positive definite hermitian inner
product (·, ·).

Definition. A unitary representation of G in V is a homomorphism G → U(V ) ⊂ GL(V ), or in
other words, a linear G-action on V by isometries.

Lemma. Any unitary representation is completely reducible.

Proof. Let W ⊂ V be a subrepresentation. We have that V = W ⊕W⊥. We need to show that
W⊥ is G-stable.

Let x ∈W⊥. We need to check that (ρ(g)x,W ) = 0. Note a very important fact:

ρ is unitary ⇐⇒ ρ(g)∗ = ρ(g)−1 = ρ(g−1)

Thus
(ρ(g)x,W ) = (x, ρ(g)∗W ) = (x, ρ(g−1)W ⊂ (x,W ) = 0,

and thus W⊥ is a subrepresentation of V .

Now let’s consider representations of topological groups. Let G be a topological group, and let V be
a finite dimensional vector space over C. Then GL(V ) ⊂ EndC(V ) ∼= Cdim(V )2

, and this inclusion is
in fact an open embedding.

Definition. A representation of G in V is a continuous representation of G.

More concretely, a representation of G in Cn is a homomorphism ρ : G→ GLn(C), with g 7→ (ρij(g)),
and this is continuous if and only if for each 1 ≤ i, j ≤ n, g 7→ ρij(g) is a continuous function from
G to C.
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As we discussed last time, the natural candidate for the group algebra over a topological group is
the algebra Cc(G) with convolution as the product. Fix a left-invariant integral

∫
on G. Then any

representation ρ : G→ GL(V ) gives V a (Cc(G), ∗)-module structure: for f ∈ Cc(G), define

ρ(f) =

∫
f(g)ρ(g) ∈ EndC(V ).

(Squirrels try to get into the classroom. Ginzburg relates that he once found a squirrel in his office
that he gave nuts to.)

If V = Cn, then

ρ(f)ij =

∫
f(g)ρij(g),

and

ρ(f)v =

∫
f(g)(ρ(g)v).

Lemma. Let ρ : G → GL(V ) be a continuous representation, and let W ⊂ V be a Cc(G)-stable
subspace. Then in fact W is G-stable, so it is a subrepresentation.

(Note that unless G is discrete, we have 1g /∈ Cc(G) for all g ∈ G, so this isn’t obvious.)

Proof. Given g ∈ G, we could recover the action of the group element using a delta function,∫
δg0(g)ρ(g) = ρ(g0).

Since we aren’t doing functional analysis, we can’t really use delta functions, but we will try to
approximate them anyway.

Let U0 be a compact neighborhood of g ∈ G. Because U0 is compact, there is some C such that∣∣∣∣∫
U0

f

∣∣∣∣ ≤ C ·max
x∈U0

|f(x)|.

For any ε > 0, find an open neighborhood Uε of g and a function φε such that3

1. |ρ(x)− ρ(g)| ≤ ε for all x ∈ Uε

2. supp(φε) = a compact subset of Uε

3. φε ≥ 0

4.
∫
φε = 1

The standard way of thinking about this is of course

g
G

φε

3Multiple readers have suggested that G needs to be locally compact and Hausdorff in order to prove that such a
function exists.
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We claim that ∣∣∣∣∫ φε(x)ρ(x)− ρ(g)

∣∣∣∣ ≤ εC0.

To see this, note that∣∣∣∣∫ φε(x)ρ(x)− ρ(g)

∣∣∣∣ =

∣∣∣∣∫
G
ρε(x)ρ(x)−

∫
G
φε(x)ρ(g)

∣∣∣∣ ≤ ∫ φε(x)|ρ(x)− ρ(g)| ≤ Cε

Finally,

lim
n→∞

∫
φ1/n(x)ρ(x) = ρ(g).

Therefore W is ρ(g)-stable.

Given a G-action on X, we let XG be the set of G-fixed points.

Lemma (Averaging Lemma). Let G be a compact group, and let ρ : G→ GL(V ) be a representation.
Then the map V → V defined by

v 7→ 1

vol(G)

∫
G
ρ(g)v

is a projection to V G ⊆ V . In particular, given a continuous G-action on X and a function
f ∈ C(X), we can define Av(f) by

x 7→
∫
G
f(gx) dg = Av(f)(x),

which is a G-invariant function on X.

Proof. We need to check that

1. If v ∈ V G, then 1
vol(G)

∫
ρ(g)v = v.

2. For all v ∈ V , we have 1
vol(G)

∫
ρ(g)v ∈ V G.

For 1, note that if ρ(g)v = v for all g, then

1

vol(G)

∫
v =

1

vol(G)
· vol(G)v = v.

For 2, we have for any h ∈ G that

ρ(h)

∫
G
ρ(g)v =

∫
G
ρ(h)ρ(g)v =

∫
G
ρ(hg)v

which, because our measure is left-invariant, is equal to∫
ρ(g)v.
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Lecture 9 (2012-10-19)

Last time, we discussed averaging.

Corollary. Any finite-dimensional representation of a compact group G in a hermitian vector
space can be made unitary, i.e. there is a positive definite hermitian form ( · , · ) on V invariant
under the group action.

Proof. Let 〈 · , · 〉 : V × V → C be the standard hermitian inner product. The group G acts on
V × V diagonally, so we can define ( · , · ) = Av〈 · , · 〉. Explicitly,

(v, w) =

∫
G
〈gv, gw〉 dg.

The integral of a positive function is positive and 〈 · , · 〉 is positive definite so

(v, v) =

∫
G
〈gv, gv〉 dg > 0

for any v 6= 0.

Theorem. Any finite-dimensional representation of a compact group is completely reducible.

Proof. Let G→ GL(V ) be a finite-dimensional representation of a compact group. Let 〈 · , · 〉 be the
standard positive definite inner product. Then the corollary implies that there exists a G-invariant
inner product, and any unitary representation is completely reducible.

Let Ĝ be the set of isomorphism classes of finite dimensional irreps of G. Then Ĝ is in bijection
with SCG, the isomorphism classes of simple CG-modules.

From now on G is finite.

Clearly, finite =⇒ compact. We declare that
∫

1x = 1 for all x ∈ G, so that vol(G) = #G, and
then we have

Theorem (Maschke’s Theorem). CG is a semisimple algebra.

This follows directly from our earlier theorem.

Given a group representation ρ : G→ GL(L), we can extend it to an algebra homomorphism from
the group algebra ρ : CG→ EndC(L), where∑

x∈G
cxx 7→

∑
x∈G

cxρ(x).

Applying the Wedderburn theorem, we see that there is an isomorphism(⊕
ρ∈Ĝ

ρ

)
: CG

∼=−−→
⊕
ρ∈Ĝ

EndC(Lρ).

Corollary. For any ρ ∈ Ĝ, we have that [CG : ρ] = dim(Lρ), and hence∑
ρ∈Ĝ

dim(Lρ)
2 = #G = dimC(CG).
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Proposition. We have that #Ĝ = # of conjugacy classes of G.

Proof. Let Z = Z(CG) be the center of CG. Then

# of conjugacy classes of G = dim(class functions on G) = dim(Z)

Now, noting the isomorphism (⊕
ρ∈Ĝ

ρ

)
: CG

∼=−−→
⊕
ρ∈Ĝ

EndC(Lρ)

we can see that an element of CG commutes with all other elements if and only if the corresponding
tuple of endomorphisms on the right all commute with the action of G. Therefore

dim(Z) = dim

(⊕
ρ∈Ĝ

EndG(Lρ)

)
= dim

(⊕
ρ∈Ĝ

C
)

= #Ĝ.

Theorem. It is the case that dim(Lρ) | #G for any ρ ∈ Ĝ.

(We will prove this later.)

Definition. For any representation ρ : G→ GL(V ), we define a function χρ ∈ C{G} by χρ(x) =
tr(ρ(x)).

Let X be a locally compact topological space, and
∫
X an integral on X. We define an inner product

(−,−) : Cc(X)× Cc(X)→ C by

(φ, ψ) 7→
∫
X
φ(x)ψ(x).

If X is a finite set with
∫

1x = 1 for all x ∈ G, then

(φ, ψ) =
∑
x∈X

φ(x)ψ(x)

is an inner product on C{X}.

Theorem (Orthogonality Relations for Characters). Let ρ, ρ′ be finite-dimensional irreps of a
compact group G. Then

〈ρ, ρ′〉 =

{
vol(G) if ρ ∼= ρ′,

0 if ρ 6∼= ρ′.

Now let’s specialize to the case that G is a finite abelian group.

Corollary.

1. A representation ρ is irreducible if and only if dim(Lρ) = 1, i.e. ρ : G→ GL1(C) = C×.

2. ρ(x) is a root of 1 for any ρ ∈ Ĝ and x ∈ G, so ρ : G→ roots of unity ⊂ S1 ⊂ C×.

3. We have a canonical algebra isomorphism (CG, ∗) ∼= (C{Ĝ}, ·).
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Proof. For part 1, note that G is abelian, so that CG is commutative, so that any simple CG-module
is 1-dimensional.

For part 2, note that any x ∈ G has finite order; say x has order n. Then

ρ(x)n = ρ(xn) = ρ(1) = 1.

For part 3, note that

CG ∼=
⊕
ρ∈Ĝ

EndG(Lρ) ∼=
⊕
ρ∈Ĝ

C ∼= C{G}

where we have used that #G = #Ĝ for G finite abelian.

For G abelian, we have a natural abelian group structure on Ĝ, by defining the product of
χ, ρ : G→ C× to be (χρ)(x) = χ(x) · ρ(x).

Observe that #Ĝ = #G by part 3 from earlier. For example, if G = Z/(n) and g = 1 mod n, then

for any choice of nth root of unity ζ, we have that χζ : gi 7→ ζi provides a bijection between Ẑ/(n)
and the group of nth roots of unity.

Define δ
Ĝ

: Ĝ→ C by

δ
Ĝ

(χ) =

{
1 if χ = 1,

0 if χ 6= 1.

By orthogonality, we see that for any χ ∈ Ĝ,∑
x∈G

χ(x) = #G · δ
Ĝ

(χ).

Therefore ∑
x∈X

χ(x) =

{
#G if χ = 1,

0 if χ 6= 1.

(this is orthogonality for characters). We are already done, but an easy check can be made directly:

Proof. Let χ 6= 1, so that there is some x0 ∈ G with χ(x0) 6= 1. We have(∑
x∈G

χ(x)

)
=
∑
x∈G

χ(x0x) = χ(x0)
∑
x∈G

χ(x)

But because χ(x0) 6= 1, this is impossible unless
∑

x∈G χ(x) = 0.

Note that for each x ∈ G, we get an element of ̂̂G by χ 7→ χ(x). This defines a canonical map

G 7→ ̂̂G, where x 7→ evx.

The corresponding maps of group algebras is CG→ C ̂̂G, where

χ(f) =
∑
x∈G

χ(x)f(x)

and
f 7→ [χ 7→ χ(f)].
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Definition. The Fourier transform FG : CG→ CĜ is defined to be the map

f 7→ [f̃ : χ 7→ 1√
#G

χ(f)],

so that

f̃(χ) =
1√
#G

∑
x∈G

f(x)χ(x).

Note that ev : G → ̂̂G is injective. This is because, for any x ∈ ker(ev), we have that ev(x) = 1,
and hence χ(x) = 1 for all χ. But this violates Wedderburn’s theorem unless x is the identity.

Theorem (Plancherel). The Fourier transform is an isometry C{G} → C{Ĝ}, i.e. (f, g) = (f̃ , g̃)
for all f, g ∈ C{G}.
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Lecture 10 (2012-10-22)

Last time, we stated the Plancherel theorem. How is this related to what you know from analysis?

The whole theory works for an arbitrary locally compact abelian group G, with small modification:
when G is finite, we let Ĝ denote the collection of maps χ : G → C×, and the image was always
contained in the circle, but when G is arbitrary, we need to specify that Ĝ consists of the unitary
irreps. Thus, for G abelian,

Ĝ = {χ : G→ S1 = U(1)}.

For example, let G = S1. The maps S1 → S1 are (as you saw on the homework) precisely of the
form e2πiθ 7→ e2πinθ for some n ∈ Z. Thus, Ĝ ∼= Z.

Let f ∈ C(S1) (note that there’s no need to worry about compact support). Then we define

f̃(n) =

∫
g
f(e2πiθ)e2πinθ dθ,

and we create a map C(S1) → C{Z} by sending f to f̃ = {f̃(n)}n∈Z, which we call the Fourier
coefficients of f .

Plancherel says that ∫
S1

f1(e2πiθ)f2(e2πiθ) dθ =
∑
n∈Z

f̃1(n)f̃2(n).

Now take G = (R,+). The maps χ : R → S1 are precisely the maps of the form χy : x 7→ e2πiyx,

where y ∈ R. Thus, Ĝ = (R,+). For f ∈ Cc(R),

f̃(y) =

∫
G
f(x)e2πiyx dx.

Remark. Note that you can think of finite as being an intersection of the properties of being
compact and being discrete.

compact oo
Fourier // discrete

Also, note that for finite groups, we proved G ∼= ̂̂G (more or less) directly; however, it is cleaner
(and generalizes more readily) to go through group algebras, i.e. to prove that CG ∼= C{Ĝ}.

Theorem (Plancherel). For all f, g ∈ C{G}, we have (f̃ , g̃) = (f, g).

Proof. We compute that

(f̃ , g̃) =
∑
χ

f̃(χ)g̃(χ)

=
∑
χ

(
1√
#G

∑
x∈G

f(x)χ(x)

) 1√
#G

∑
y∈G

g(y)χ(y)



=
1

#G

∑
x,y∈G,
χ∈Ĝ

f(x)g(y)χ(x)χ(y)
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=
1

#G

∑
x,y∈G

f(x)g(y)

∑
χ∈Ĝ

χ(xy−1)



=
1

#G

∑
x,y∈G

f(x)g(y)

(
#G if x = y

0 if x 6= y

)

=
∑
x∈G

f(x)g(x)

= (f, g).

Now, we have FG : C{G} → C{Ĝ}; how do we find F−1
G ? For any group G, define an anti-involution

τ : Cc(G)→ Cc(G) by f τ (x) = f(x−1).

Theorem (Inversion theorem). For any f ∈ C{G}, we have ˜̃f = f τ .

Proof. We have that

F
Ĝ

(f̃)(x) =
1√
#G

∑
χ∈Ĝ

f̃(χ)χ(x)

=
1√
#G

∑
χ∈Ĝ

 1√
#G

∑
y∈G

f(y)χ(y)

χ(x)

=
1

#G

∑
χ∈Ĝ,
y∈G

f(y)χ(yx)

=
1

#G

∑
y∈G

f(y)

∑
χ∈Ĝ

χ(yx)


=

1

#G

∑
y∈G

f(y)

(
#G if y = x−1

0 if y 6= x−1

)
= f(x−1) = f τ (x).

Now let G be a finite group, no longer necessarily abelian. Then the orthogonality relation for G
says that

f(e) =
∑
ρ∈Ĝ

dim(Lρ)

#G
trLρ(ρ(f)).

Proof. Because this is a linear equation in f , it suffices to check it for f = 1g for each g ∈ G. Note
that in the regular representation of G on CG, we have that

tr(g

œ CG) =

{
#G if g = e,

0 if g 6= e.
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Hence
#G · f(e) = tr(g

œ CG) =
∑
ρ∈Ĝ

dim(Lρ)tr(ρ(g)) =
∑
ρ∈Ĝ

dim(Lρ) · tr(ρ(1g)).

Lemma. For any unitary representation ρ and f ∈ C{G}, we have

ρ(f τ ) = ρ(f)∗.

Proof. Note that

ρ(f τ ) =
∑
x∈G

f(x−1)ρ(x) =
∑
y∈G

f(y)ρ(y)−1,

and because ρ is a unitary representation, this equals∑
y∈G

f(y)ρ(y)∗ =
∑
y∈G

(f(y)ρ(y))∗ = ρ(f)∗.

Given f ∈ C{G} for G a arbitrary (locally compact?) non-abelian group, Ĝ is no longer a group,
but for ρ ∈ Ĝ we can still define

f̃ρ =

√
dim(Lρ)

#G
, ρ(f) ∈ EndC(Lρ).

Then the general Plancherel theorem says that, for φ, ψ ∈ C{G},

(φ, ψ) =
∑
ρ∈Ĝ

dim(ρ)

#G
tr(ρ(φ)ρ(ψ)∗).

Slogan: Any commutative algebra is an algebra of functions, any non-commutative algebra is an
algebra of operators.
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Lecture 11 (2012-10-24)

Just as a reminder, the midterm is today, 4:30 to 6:15, in Eckhart 312.

Theorem (Plancherel, general case). For φ, ψ ∈ C{G},∑
g∈G

φ(g)ψ(g) =
∑
ρ∈Ĝ

dim(ρ)

#G
tr(ρ(φ)ρ(ψ)∗).

Proof. Let f = φ ∗ ψτ . Apply the orthogonality relations to f :

(φ ∗ ψτ )(e) =
∑
ρ∈Ĝ

dim(ρ)

#G
tr(ρ(φ ∗ ψτ )).

By definition of convolution, the LHS of the above orthogonality relation is equal to∑
y∈G

φ(ey−1)ψτ (y) =
∑
y∈G

φ(y−1)ψ(y−1) (LHS of theorem).

We know that ρ(φ∗ψτ ) = ρ(φ)ρ(ψτ ), and by the last lemma from Lecture 11, ρ(ψτ ) = ρ(ψ)∗. Hence
the RHS of orthogonality coincides with the RHS of the theorem, and we are done.

Recall from Wedderburn theory that the map

Ψ : CG→
⊕
ρ∈Ĝ

EndC(Lρ) : f 7→ ⊕
ρ∈Ĝ

ρ(f)

is an isomorphism. The inversion theorem gives a formula for the inverse:

Theorem (Inversion). For a = ⊕
ρ∈Ĝ

aρ ∈
⊕
ρ∈Ĝ

EndC(Lρ), the inverse map Ψ−1 is given by

Ψ−1(a)(g) =
∑
ρ∈Ĝ

dim(ρ)

#G
tr(aρ · ρ(g)−1).

Proof. WLOG we can assume a = Ψ(f) = ⊕
ρ∈Ĝ

ρ(f) for some f ∈ C{G}. We need to check

∑
ρ∈Ĝ

dim(ρ)

#G
tr(ρ(f)ρ(g)−1)

?
= f(g).

But the left side is just equal to∑
ρ∈Ĝ

dim(ρ)

#G
tr(ρ(f) · ρ(1g)

∗)
Plancherel

=
∑
x∈G

f(x)1g(x) = f(g).

Recall that the character of a representation ρ is defined to be χρ(f) = tr(ρ(g)).

Corollary. The element eρ = dim(ρ)
#G

∑
g∈G

χρ(g) · g is a central idempotent in CG. Moreover,

ρ′(eρ) =

{
idLρ if ρ′ ∼= ρ,

0 if ρ′ 6∼= ρ.
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Proof. Take a = ⊕ρ′aρ′ , where aρ′ =

{
idLρ if ρ′ ∼= ρ,

0 if ρ′ 6∼= ρ.
. Then

Ψ−1(a)(g)
inversion

=
dim(ρ)

#G
tr(ρ(g−1))

which implies that Ψ−1(a) = dim(ρ)
#G

∑
g∈G

tr(ρ(g)∗). But

tr(ρ(g)∗) = tr(ρ(g)) = tr(ρ(g)) = χρ(g)

so we are done.

Let C{G}G be the collection of class functions on G.

Theorem (Classical orthogonality). The set {χρ | ρ ∈ Ĝ} is an orthonormal basis of C{G}G, i.e.

(χρ, χρ′) =

{
#G if ρ ∼= ρ′,

0 if ρ 6∼= ρ′.

Proof.

(χρ, χρ) =
∑
g∈G

χρ(g)χρ′(g) =

(
#G

dim(ρ)
eρ,

#G

dim(ρ′)
eρ′

)
Plancherel

=
∑
σ∈Ĝ

dim(σ)

#G
tr

(
σ

(
#G

dim(ρ)
eρ

)
· σ
(

#G

dim(ρ′)
eρ′

)∗)

=
∑
σ∈Ĝ

dim(σ)

#G

(#G)2

dim(ρ) dim(ρ′)
tr
(
δσρidLρ · δσρ′ idLρ′

)

=

{
0 if ρ 6∼= ρ′,
dim(ρ)

#G · (#G)2

dim(ρ)2 dim(ρ) = #G if ρ ∼= ρ′.

Tensor products

Let B be a ring. We can consider right B-modules, which are equivalent to left Bop-modules. If
B is commutative, then left is the same as right. For example, we can think of the collection of
column vectors 

B
B
...
B


as a left Mn(B)-module, and the collection of row vectors(

B B · · · B
)

as a right Mn(B)-module.

Let A and B be rings. An (A,B)-bimodule is an abelian group M which is a left A-module and a
right B-module such that the A-action and B-action commute.
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Examples.

• A is an (A,A)-bimodule in the obvious way.

• The space of m× n matrices over A is an (Mm(A),Mn(A))-bimodule.

Definition. Let M be a right A-module, and N be a left A-module. Then we define

M ⊗A N =
{free abelian group on symbols m⊗ n}〈 (m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n
m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2

ma⊗ n−m⊗ an

〉

Comments.

• If A is a k-algebra, then M ⊗A N is a quotient of M ⊗k N .

• A⊗A N = N and M ⊗A A = M

• If we have rings A, B, and if M is an (A,B)-bimodule, then for any left B-module N , there
is still a left A-action on M ⊗B N , making it into a left A-module.

• The tensor product ⊗A has a universal property,

M ×N

f
((

canonical //M ⊗A N

∃!f̃
��
M

where f̃ is a map of abelian groups and f is a ‘‘middle A-linear’’ map.
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Lecture 12 (2012-10-26)

We’ll continue talking about tensor products today.

Recall that any abelian group can be considered as a Z-module, and therefore we can tensor them
over Z. In particular, for any rings A and B, we can form the tensor product A⊗Z B, which is a
ring in the obvious way:

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

We can do the same for k-algebras; given k-algebras A,B, then A ⊗k B is a k-algebra, with the
same operation as above.

A good way of thinking about (A,B)-bimodules is as left modules over A⊗Z (Bop).

Given a left A-module M and a left B-module N , we can form their ‘‘external tensor product’’
M ⊗Z N , sometimes denoted M �N , which is a left A⊗Z B-module.

Given two groups G and H, and a G-representation ρ and a H-representation ρ′, then we can
form an external tensor product ρ� ρ′ which is a (G×H)-representation. To describe it explicitly,
given ρ : G → GL(V ) and ρ′ : H → GL(V ′), then ρ � ρ′ : G ×H → GL(V ⊗k V ′) maps g × h to
ρ(g)⊗ ρ′(h).

Note that the G-representation ρ is equivalent to the left kG-module V , and the H-represenation ρ′

is equivalent to the left kH-module V ′. We have a canonical isomorphism

k(G×H) ∼= kG⊗k kH,

and ρ� ρ′ is the (G×H)-represenation that corresponds to the (kG⊗k kH)-module V � V ′.

Given two representations ρ and ρ′ of G, then we define ρ⊗ ρ′ : G→ GL(V ⊗ V ′) by mapping g to
ρ(g)⊗ ρ′(g). This is different than �; for example, if ρ′ is the regular representation G

œ

kG, then
V ⊗k kG won’t be the same V ⊗kG kG = V (recall M ⊗A A ∼= M).

In other words, given two modules over an algebra, we can tensor them over the base field, but
there won’t be any canonical action of the algebra on it.

The special property kG has is that it is a Hopf algebra, i.e. there is an algebra morphism
δ : kG→ kG⊗k kG mapping g to g ⊗ g.

Proposition.

1. If ρ is an irrep of a finite group G, and ρ′ is an irrep of a finite group H, then ρ� ρ′ is an
irrep of G×H.

2. Any irrep of G×H has the form ρ� ρ′ for irreps ρ ∈ Ĝ, ρ′ ∈ Ĥ.

Proof. Recall that χρ(g) = tr(ρ(g)) and χρ′(h) = tr(ρ′(h)). Then

χρ� ρ′(g, h) = tr(ρ(g)⊗ ρ′(h)) = tr(ρ(g))tr(ρ′(h)) = χρ(g)χρ′(h).

Thus
(χρ� ρ′ , χρ� ρ′) = (χρ, χρ) · (χρ′ , χρ′).

By the orthogonality relations, this is equal to #G ·#H = #(G×H), and therefore ρ� ρ′ is an
irrep of G×H.
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To see part 2, we use a counting argument. The number of representations of the form ρ� ρ′ with
ρ ∈ Ĝ, ρ′ ∈ Ĥ is just #(Ĝ× Ĥ).

A priori, #(Ĝ×H) = # of conjugacy classes in G×H, but a conjugacy class in G×H is just a
product of conjugacy classes from G and H, so

#(Ĝ×H) = # of conjugacy classes in G×H
= (# of conjugacy classes in G) · (# of conjugacy classes in H)

= #Ĝ ·#Ĥ.

If A is a ring, and M is an A-bimodule, we can form

TA(M) = A⊗M ⊕ (M ⊗AM)⊕ (M ⊗AM ⊗AM)⊕ · · ·

which is an algebra where the operation on simple tensors in a single degree is just concatenation,

(m1 ⊗ · · · ⊗mk) · (n1 ⊗ · · · ⊗ n`) = m1 ⊗ · · · ⊗mk ⊗ n1 ⊗ · · · ⊗ n`.

Fix a finite set X, and let A = k{X} =
⊕

x∈X k ·1x. An A-module M decomposes as M =
⊕

x∈XMx

where Mx is a k-vector space. Take another A-module N . How can we think about M ⊗A N?

We know that M ⊗A N will be a quotient of M ⊗k N =
⊕

x,y∈XMx ⊗k Ny. Specifically,

M ⊗A N =

⊕
x,yMx ⊗k Ny〈

(m · 1z)⊗ n = m⊗ (1zn) for all z ∈ X
〉 ∼= ⊕

x∈X
Mx ⊗k Nx.

More generally, if X and Y are finite sets, then

k{X} ⊗k k{Y } = k{X × Y },

via the map 1x ⊗ 1y 7→ 1x,y.

Now let M,N be k{X}-bimodules. Then M = (Mx,y)(x,y)∈X×X because a k{X}-bimodule is just a
left module over k{X} ⊗ k{X}op = k{X} ⊗ k{X} = k{X ×X}.

For any mx′,y′ ∈M(x′,y′), we have

1x ·mx′,y′ · 1y =

{
mx,y if x = x′, y = y′,

0 otherwise.

Thus

M ⊗A N =
⊕

x1,x2∈X

⊕
y∈X

(Mx1,y ⊗k Ny,x2)

 .

Let M be a bimodule over A = k{X}. Then

TAM = A⊕

(⊕
x1,x2

Mx1,x2

)
⊕

( ⊕
x1,x2,x3

Mx1,x2 ⊗Mx2,x3

)
⊕

( ⊕
x1,x2,x3,x4

Mx1,x2 ⊗Mx2,x3 ⊗Mx3,x4

)
· · ·
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We will now define a construction called the smash product. Let A be a ring, and let G be a group
acting on A by automorphisms. For example, we might have G ⊂ A×, and G

œ

A via g · a = gag−1.
Let’s use the notation ga for g acting on a.

A G-equivariant A-module M is an A-module A⊗M →M and a G-representation G×M →M
such that g(am) = gag(m). In the case of G ⊂ A×, then this just says that

g(am) = (gag−1)(gm) = (ga)m.

The smash product A#G will be an algebra such that modules over A#G are equivalent to
G-equivariant A-modules.
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Lecture 13 (2012-10-29)

Last time, we finished with the definition of a G-equivariant A-module.

Examples.

• Let A = k{X}, and let G

œ

X. Then there is an obvious induced action G
œ

A: because g
sends x to gx, it should send 1x to 1gx, and hence it sends any f =

∑
x∈X λx1x ∈ A to

gf =
∑
x∈X

λx1gx.

Note that (gf)(x) = λg−1(x). Given an A-module M and a (possibly unrelated) k-linear
G-action G

œ

M , what does it mean for M =
⊕

x∈XMx to be a G-equivariant A-module?

M is G-equivariant when, for any g ∈ G, the action of g on M consists of maps g∗ : Mx →Mg(x)

(in general, it could be any k-linear map, even one that doesn’t respect the decomposition of
M over the elements of X) with the property that, for any f =

∑
x∈X λx1x = (λx)x∈X ∈ A

and m = (mx)x∈X ∈M ,
g∗((λx)(mx)) = (λg−1(x))g∗((mx)).

Visualizing M as the vector space Mx attached to the corresponding point x,

x g(x) h(g(x))

Mx Mg(x) Mh(g(x))

g

g∗

h

h∗

• For any k-algebra A and any k-vector space V , we can make a free A-module M = A⊗k V .
Then, for any action G

œ

A and any G-representation G → GL(V ), we can let G act on
M = A⊗k V by g(a⊗ v) = ga⊗ g(v). Let’s do an example:

Let G

œ

E where E is a set. Then G

œ

A = k[E], the polynomial ring in the elements of E. Let
M = k[E]⊗ V . Then we get what in geometry would be called a vector bundle, and moreover
one carrying a G-action:

E × V (e, V ) (g(e), V )

E e g(e)

g∗

g

Because G acts on k[E] by automorphisms, knowing how G acts on E tells us how it will act
on any element of k[E].

Question. Can we define an algebra A#G such that the data of a G-equivariant A-module is
equivalent to the data of an A#G-module?
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Definition. Given a k-algebra A, the algebra A#G is defined to be a free A-module with basis G,
so a general element looks like

∑
g∈G agg. We define

(ag)(bh) = (a · gb) · (gh)

where a, b ∈ A, and g, h ∈ G. This construction answers the question in the affirmative.

Note the similarity to the definition of the semi-direct product.

Note that we have an inclusion A ↪→ A#G defined by a 7→ a · 1G.

When G is finite (so that we can speak of kG), we also have an inclusion kG ↪→ A#G mapping
λ · g 7→ λ · g. In particular, if A = k, then k#G = kG. Note that A#G ∼= A ⊗k kG as k-vector
spaces, but not as k-algebras, and certainly not as A-algebras.

Now let A be a k-algebra with an action of a finite group G
œ

A. Then kG ↪→ A#G, and therefore
A#G is a kG-bimodule, i.e. A#G has a G×G action,

(g1 × g2) : a · h 7→ g1 · (a · h) · g−1
2 .

Let

e =
1

#G

∑
g∈G

g

be the standard averaging idempotent. Recall that e is central and e2 = e in kG ⊂ A#G.

For any ag ∈ A#G, we have that

(ag)e =
1

#G

∑
h∈G

agh =
1

#G

∑
h∈G

ah = ae.

Thus, for any
∑

g∈G agg ∈ A#G, we have∑
g∈G

agg

 e =

∑
g∈G

ag

 e,

and hence (A#G)e ∼= Ae. Then, e(Ae) = eAe consists of the elements of Ae fixed by g (recall that in
general if G acts on V , then eV = V G), so there is a canonical isomorphism e(A#G)e ∼= eAe ∼= AG.

Quivers

Definition. A quiver is a finite oriented graph. We can write it as an ordered pair (Q, I) where I
is the set of vertices and Q is the set of arrows.

Last edited
2012-12-10

Math 325 - Algebra 1 Page 38
Lecture 13



We often denote a quiver just by the set of arrows Q.

A path in Q is a finite sequence of arrows which meet head to tail.

Definition. The path algebra kQ of Q over a field k is a k-vector space with basis formed by paths
in Q, with product given by concatenation of paths which can be concatenated (paths that can’t be
concatenated multiply to 0). The order in which paths are concatenated is apparently a delicate
issue. There are also trivial paths 1i at each vertex i ∈ I; each trivial path is an idempotent, and
acts as an identity when concatenated with paths that start or end at i.

Examples.

• Consider the quiver Q with one vertex and one edge (the trivial path is implied),

x

Then kQ = k[x]. Note that, without the trivial path at the vertex, we’d only get polynomials
in x with no constant term.

• Consider the quiver Q with n loops around one vertex (the trivial path is implied),

x1

x2

xn

...

Then kQ = k〈x1, . . . , xn〉, the free associative algebra on n generators.

• Consider the quiver Q with n vertices in a row with edges between them,

· · ·
11 12 13 1n−1 1n

x1 x2 xn−1

Then we get kQ = the algebra of upper triangular matrices over k. The trivial path 1i at
vertex i corresponds to a matrix with 1 on the ith diagonal entry and 0 elsewhere.

Definition. Given a finite subgroup G ⊂ GL(V ), we define the McKay quiver QG associated to it
as follows. The vertex set of QG is in bijection with Ĝ, say with i↔ Li. Then we set the number of
edges from i to j to be

#{i→ j} = dim(HomG(Li, V ⊗ Lj)) = [V ⊗ Lj : Li].

Example. Let G =
{(

ζ 0
0 ζ−1

) ∣∣∣ ζn = 1
}
⊂ GL(C2). Then G ∼= Z/nZ. Letting z be a primitive nth

root of unity, then the irreducible representations of G are the maps Li : G → C× defined by(
z 0
0 z−1

)
7→ zi for i = 0, 1, . . . , n− 1. Noting that C2 = L1 ⊕ L−1, we get

Last edited
2012-12-10

Math 325 - Algebra 1 Page 39
Lecture 13



i+ 1

i

i− 1

· · ·

···
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Lecture 14 (2012-10-31)

Let (Q, I) be a quiver. We want to understand its path algebra kQ over the field k. We can define
Eij to be a vector space with basis the edges {i→ j} from i to j. Now define E =

⊕
i,j∈I Eij . Since

this is indexed in two elements of I, it is a k{I}-bimodule, via

1k · eij · 1` =

{
eij if k = i, j = `,

0 otherwise.

Proposition. There is an isomorphism

kQ ∼= Tk{I}E = k{I} ⊕ E ⊕
(
E ⊗k{I} E

)
⊕
(
E ⊗k{I} E ⊗k{I} E

)
⊕ · · ·

Proof. There is a well-defined notion of the length of a path; we can just take the number of edges
in the path. Now note that

k{I} has basis {1i}, all the paths of length 0

E has basis {i→ j}, all the paths of length 1

E ⊗k{I} E
generated by {pairs (i1 → j1)⊗ (i2 → j2) of paths of length 1},
except pairs which do not meet head to tail (j1 6= i2) are 0

Multiplication in Tk{I}E corresponds to concatenation of paths.

Example. Let Q be the quiver of n loops on one vertex.

x1

x2

x3

xn

...

As we saw last class, kQ = k〈x1, . . . , xn〉, the free associative algebra on n generators. For this
quiver, I has one element, so k{I} = k, and every path can be concatenated. The edge set Q from
the sole vertex to itself has n elements. The proposition then corresponds to the decomposition of
k〈x1, . . . , xn〉 as a direct sum of the subspaces consisting of monomials of a given degree:

k〈x1, . . . , xn〉 = k ⊕

⊕
xi∈Q

kxi

⊕
 ⊕
xi,xj∈Q

k(xixj)

⊕ · · ·
Now let V be a finite-dimensional vector space over C. Let G ⊂ GL(V ) be a finite subgroup. Recall
that the McKay quiver QG has vertex set I = Ĝ, which we will label so that ρ ∈ I corresponds to
Lρ. Note that the indicator function 1ρ ∈ C{Ĝ} is just the trivial path for ρ in the path algebra
CQG. Let 0 ∈ I correspond to the trivial representation.

We will prove the following theorem:

Theorem 1. There is an isomorphism (TCV )G ∼= 10CQG10.
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However, we will need to prove another theorem before we can prove Theorem 1.

For each ρ ∈ Ĝ, choose a one-dimensional subspace of Lρ, and let pρ be the projection of CG onto
that subspace. Considered as an element of EndC(Lρ), the matrix of pρ is just1 · ·

· · ·
· · ·


Because CG contains dim(Lρ) copies of Lρ, we have that Lρ = CG · pρ. Note that p2

ρ = pρ ∈ CG.
These are orthogonal idempotents, so that p =

∑
ρ∈Ĝ pρ satisfies p2 = p.

As a vector space, TCV#G = TCV ⊗C CG with a ‘‘twisted’’ multiplication4 via the action of G on
V . Therefore CG ↪→ TCV#G, and we can consider the projections pρ as living inside this larger
algebra.

Theorem 2. There exists an algebra isomorphism Φ : p(TCV#G)p→ CQG satisfying Φ(pρ) = 1ρ
(but this condition itself does not tell us the values of Φ on all of p(TCV#G)p).

To see that Theorem 2 implies Theorem 1, note that p0 = e = 1
#G

∑
g∈G g and that p0p = p0 = pp0.

Now observe that

(TCV )G ∼= e(TCV#G)e

= p0(TCV#G)p0

= p0[p(TCV#G)p]p0

(by Theorem 2) ∼= 10[CQG]10.

Proof of Theorem 2. Let M be a G-representation. From the matrix description of pρ in EndC(Lρ) =
Lρ�L∗ρ ⊂ CG, we can deduce that Lρ = CG · pρ ⊂ CG as left CG-modules and L∗ρ ' pρCG as right
CG-modules. Therefore

HomG(Lρ,M) ∼= HomCG(CGpρ,M) = pρM.

Now let M be a CG-bimodule, i.e. (G×G)-representation. Then

HomG×G(Lρ � L∗σ,M) ∼= pρMpσ.

Thus applying Wedderburn’s theorem,

pCGp =
⊕
µ∈Ĝ

p(End(Lµ))p

=
⊕

µ,ρ,σ∈Ĝ

pρ(End(Lµ))pσ

=
⊕

µ,ρ,σ∈Ĝ

pρ
(
Lµ � L∗µ

)
pσ

=
⊕
µ∈Ĝ

C⊗ C =
⊕
µ∈Ĝ

C = C{Ĝ}.

4In fact we see later that there is an even cleaner definition TCV#G = TCGM .
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The isomorphism pCGp ∼= C{Ĝ} is of algebras, where multiplication on C{Ĝ} is pointwise.

Now define M = V ⊗C CG, and make it a (G×G)-module (i.e. CG-bimodule), where

g(v ⊗ u) = gv ⊗ gu, (v ⊗ u)g = v ⊗ ug.

We decompose CG in the same way as before to get an isomorphism of CG-bimodules

M = V ⊗

(⊕
µ

End(Lµ)

)
=
⊕
µ

(V ⊗ Lµ) � L∗µ.

We want to compute pMp. We have

pMp =
⊕
ρ,σ∈Ĝ

pρMpσ =
⊕
ρ,σ

HomG×G(Lρ � L∗σ,M)

=
⊕
ρ,σ,µ

HomG×G(Lρ � L∗σ, (V ⊗ Lµ) � L∗µ)

A dimension argument shows that

HomG×G(Lρ � L∗σ, (V ⊗ Lµ) � L∗µ) = HomG(Lρ, V ⊗ Lµ)⊗C HomG(L∗σ, L
∗
µ).

Now an application of Schur’s lemma implies that

pMp =
⊕
ρ,σ

HomG(Lρ, V ⊗ Lσ) =
⊕
ρ,σ

Eρ,σ =: E

where E was introduced at the beginning of the lecture. It is an easy check that our isomorphisms
C{Ĝ} ' pCGp and E ' pMp are compatible with the module structures. Hence by the earlier
proposition,

CQG = TC{Ĝ}E = TpCGp(pMp).

The following is a key lemma:

Lemma. There is an isomorphism p(TCGM)p ∼= TpCGp(pMp) as pCGp-algebras (so 1ρ still corre-
sponds to pρ).

Proof. Let A = CG. Given an algebra A and and p = p2 ∈ A such that ApA = A, then for an
A-bimodule M we have M ⊗AM = Mp⊗pAp pM , by a result on your current homework.

Now, by induction,

M ⊗AM ⊗A · · · ⊗AM = Mp⊗pAp pMp⊗pAp · · · ⊗pAp pM

and then we can mulitply on the left and right by p to get something more symmetric,

p (M ⊗AM ⊗A · · · ⊗AM) p = pMp⊗pAp pMp⊗pAp · · · ⊗pAp pMp.

But to apply the lemma, we need to check that CGpCG = CG. Using that CG =
⊕

µ∈Ĝ End(Lµ),
we can see that

End(Lµ)pµEnd(Lµ) = End(Lµ)

because this algebra has no two-sided ideals; alternatively you can directly check that you can
express any matrix as a product with the matrix for pµ in the middle.
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For a left CG-module N , we have

M ⊗CG N = (V ⊗C CG)⊗CG N = V ⊗C N

where v⊗ x⊗ n 7→ v⊗ x.n and the left G-action on V ⊗CN is g(v⊗ n) = gv⊗ gn. Induction shows
that TCGM ∼= TCV ⊗ CG, where

(v1 ⊗ x1)⊗ · · · ⊗ (vi ⊗ xi) 7→ v1 ⊗ x1v2 ⊗ x1x2v3 ⊗ · · · ⊗ (x1 · · ·xi−1vi)⊗ (x1 · · ·xi).

This explicit formula shows that TCGM = TCV#G as CG-algebras, and we are done. (End of proof
of Theorem 2.)
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Lecture 15 (2012-11-02)

Induced Representations

Suppose we have two rings A and B and a homomorphism f : A→ B. Given a B-module N , we

can treat it as an A-module simply by composing A
f−→ B → End(N). We will denote the resulting

A-module by f∗N , to distinguish it from N itself. (This may be confusing if you are an algebraic
geometer, because it would be the pullback to you.) This is a functor from B-Mod to A-Mod.

Note that f makes B an A-bimodule, by

a1 · b · a2 = f(a1)bf(a2).

Given an A-module M , we can construct two functors A-Mod→ B-Mod:

• Induction: B ⊗AM is a left B-module.

• Coinduction: HomA(B,M) is a left B-module.

There are important relations between these constructions:

HomB(B ⊗AM,N) ∼= HomA(M,f∗N)

HomB(N,HomA(B,M)) ∼= HomA(f∗N,M).

Since we won’t be using these, I’ll leave them as exercises. They follow easily using the relevant
universal properties.

Let G be a group and H ⊂ G a subgroup. Let ρ : H → GL(M) be a representation over a field
k. There are three ways of constructing an induced representation, and they all turn out to be
equivalent when G is finite.

1. We construct a representation IndGH(ρ) as follows. Define

IndGH(ρ) =

{
f : G→M

∣∣∣∣ f(gh) = ρ(h)f(g)
for all g ∈ G, h ∈ H

}
and then let G act on it by

(gf)(k) := f(g−1k).

2. We called the following construction coinduction when we discussed it earlier. We consider
HomH(k{G},M) as a G-representation by letting G act on k{G} by right translations.

3. When G is finite, we can also use the inclusion kH ↪→ kG to construct kG⊗kH M .

Remark. Any k-algebra B is a B-bimodule, and B∗ = Homk(B, k). Left multiplication on the
input gives a right action, and right multiplication on the input gives a left action. We say that B
is Frobenius algebra if there is a B-bimodule isomorphism B ∼= B∗.

Suppose that we have a Frobenius algebra. In an isomorphism B ∼= B∗, look at where 1B ∈ B goes;
say it goes to φ ∈ B∗. Then because 1B has a special property, namely that b · 1 = 1 · b for all b ∈ B,
then φ must have the same property, so that φ(b1b2) = φ(b2b1).

Thus, a finite-dimensional algebra B is Frobenius if and only if there exists a bilinear form tr : B → k
that is symmetric and non-degenerate.
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For any finite G, the algebra kG is Frobenius.

If B ∼= B∗ and B is finite-dimensional, then HomA(B,M) ∼= B∗ ⊗AM ∼= B ⊗AM .

Remark. Let’s consider the first version of induction, in the case when M is the trivial 1-dimensional
representation. Then IndGH(triv) = k{G/H} because it consists of functions from G to k such that
f(gh) = ρ(h)f(g) = f(g) for all g ∈ G, h ∈ H, so the function f is determined by what it does to
the cosets G/H.

Observe that IndGH(ρ) has a natrual structure of a k{G/H}-module. Since, for any f ∈ IndGH(ρ) and
ψ ∈ k{G/H}, we have ψf ∈ IndGH(ρ), we see that for any ρ, IndGH(ρ) is a (k{G/H}#G)-module.
Thus, IndGH(ρ) is a G-equivariant k{G/H}-module.

Remark. We have

G

œ

G×M ö diagonal H-action

G

œ

G ö H-action by right mult.

pr1 H-equiv. map

and

G

œ

G×H M := (G×M)/H ⊃ M

G

œ

G/H 3 H/H = pt

p

We claim that
IndGH(ρ) = {s : G/H → (G×H M) which are sections of p}.

Example. Let G = R and H = Z, so that G/H = R/Z ∼= S1. Let χ : Z → GL(M) be a
1-dimensional representation of Z where 1 7→ q ∈ C×, and hence n 7→ qn. Then

IndR
Z(χ) = {f : R→ C | f(x+ 1) = q · f(x)},

the space of quasi-periodic functions on R. The fact that we don’t get exactly periodic functions is
related to the non-triviality of the vector bundles indicated above. If q is an nth root of unity, then
we can lift a periodic function on R (i.e. a function on S1) to a quasi-periodic function on R (i.e. a
function on an n-sheeted cover of S1).

Representation Theory of Sn

There is a natural action Sn

œ

k[x1, . . . , xn]. You’re probably all familiar with the following result:

Theorem. The algebra of symmetric polynomials is the free commutative k-algebra on the elemen-
tary symmetric polynomials, i.e. k[x1, . . . , xn]Sn = k[σ1, . . . , σn].

Recall the Vandermonde polynomial:

Dn =
∏

1≤i<j≤n
(xi − xj) ∈ k[x1, . . . , xn], deg(Dn) =

n(n− 1)

2
.
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Let sij = (i, j) ∈ Sn. Then sij(Dn) = −Dn. The sij generate Sn, so for any s ∈ Sn, we have
s(Dn) = ±Dn. We conclude that there is a map sign : Sn → {±1} such that sign(sij) = −1. Let

k[x1, . . . , xn]sign = {f ∈ k[x1, . . . , xn] | s(f) = sign(s) · f}.

This is a k[x1, . . . , xn]Sn-module.

Proposition. The module k[x1, . . . , xn]sign is a rank 1 free k[x1, . . . , xn]Sn-module, generated by
the Vandermonde polynomial Dn.

Proof. Suppose that f is skew-symmetric. Then f |xi=xj = 0 implies that (xi − xj) | f , and because
k[x1, . . . , xn] is a UFD and all of the polynomials xi − xj are coprime, we must have that

Dn =
∏
i<j

(xi − xj) | f.
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Lecture 16 (2012-11-05)

A partition of an integer n ≥ 1 is an integer sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) such that
∑
λi = n.

We define |λ| :=
∑
λi. Let Pn be the set of partitions of n.

Let Rdn = Zd[x1, . . . , xn]Sn denote the homogeneous integer polynomials of degree d in n variables.
We use mutli-index notation, so that for α = (α1, . . . , αn) ∈ Zn≥0, the symbol xα denotes xα1

1 · · ·xαnn .

We claim that Rdn is a free Z-module with basis

mλ =
∑

α which are
a permutation

of λ∈Pd

xα

as λ ranges over the elements of Pd with no more than n non-zero elements. These mλ are called the
monomial symmetric functions. In our discussion we will be assuming that n ≥ d; otherwise, there
will be λ ∈ Pd with more than n non-zero elements, so that no α ∈ Zn≥0 is a permutation of them.

Because we would like to talk about Rdn for every d ≥ 0, it might seem that working in Z[x1, x2, . . .]
would be preferable, but we can’t because symmetric functions in infinitely many variables would
require infinite sums, which are nonsensical. Thus, for this class we will let the value of n be in
limbo; some statements will technically only be true up to degree n, but since we can choose the
value of n to be arbitrarily high, we will omit this issue.

Note that R =
⊕

d≥0R
d is a ring, and that it has the structure of a graded ring. We see that

∑
d≥0

rank(Rd)td =
∑
d≥0

(#Pd)t
d =

∏
k≥0

1

1− tk
,

by a theorem of Euler.

For each r > 0, we let er denote the rth elementary symmetric function (again, we are not specifying
how many variables these symmetric functions are in; it is just arbitrarily large). Then their
generating function is

E(t) =
∑
r

ert
r =

∏
i≥1

(1 + xit).

(This product is only true up to degree n if we are working with n variables.)

Reader suggestion: to avoid the confusion of n in limbo, perhaps we can consider R∞ = lim←−Rn where the

transition maps Rn+1 � Rn evaluates xn+1 to zero. Then R∞ � Rn for any n. This agrees with (and is

motivated by) the use of generating functions. Note that R∞ is still a graded ring, and Rd∞ = Rdn for n ≥ d.

Now define hr by

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

1

1− xit
.

These hi are called the complete symmetric functions. We can see that in general

hr =
∑
λ∈Pr

mλ,

with h0 = 1 and h1 = e1.
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It is easy to see that H(t) · E(−t) = 1. Therefore, looking at coefficients,

n∑
r=0

(−1)rerhn−r = 0.

Because this gives a way of expressing hn in terms of the ei’s and the hk for k < n, the above result
has as a corollary that R = Z[h1, h2, . . .] (we already knew R = Z[e1, e2, . . .]). In fact, the hi’s freely
generate R as a Z-algebra, because if they satisfied any non-trivial relations between each other,
we could use the result to turn that into a non-trivial relation between the ei’s, which we know is
impossible.

In summary: the mλ freely generate R as a Z-module, the ei’s freely generate R as a Z-algebra, and
the hi’s freely generate R as a Z-algebra.

For each r ≥ 1, we define the power sum pr =
∑
xri . Their generating function is

P (t) =
∑
r≥1

prt
r−1.

It is a standard computation that

P (t) =
∑
r≥1

prt
r−1 =

∑
i≥1

∑
r≥1

xri t
r−1 =

∑
i≥1

xi
1− xit

=

∑
i≥1

d

dt

(
log

(
1

1− xit

))
=

d

dt

(
log

(∏
i≥1

1

1− xit

))
=
d (log(H(t)))

dt
=
H ′(t)

H(t)
.

We can also then see that

P (−t) =
E′(t)

E(t)
.

In coefficents, these observations tell us that

n · hn =

n∑
r=1

prhn−r, n · en =

n∑
r=1

(−1)r−1pren−r.

These are called Newton’s identities. As a corollary, if we allow symmetric functions with coefficients
in Q so that we can get rid of the n’s, we see that

Q⊗Z R = Q[p1, p2, . . .].

Remark. Let x = diag(x1, . . . , xn), and let x

œ

V = kn. Then x

œ

V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

, via x ⊗ · · · ⊗ x.

Taking the trace of this action,
tr(x|ΛrV ) = er(x1, . . . , xn)

tr(x|Symr V ) = hr(x1, . . . , xn)

You might hope that there is some construction on V such that x has trace pr(x1, . . . , xn) on
it. There is no such thing, but Adams pretended there was such a thing, and his construction is
important in topology.

tr(x|Adams(V )) = pr(x1, . . . , xn).
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Given a partition λ = (λ1 ≥ λ2 ≥ · · · ), we define

eλ = eλ1eλ2 · · · , hλ = hλ1hλ2 · · · , pλ = pλ1pλ2 · · · .

The eλ form a Z-basis for R, the hλ also form a Z-basis for R, and the pλ form a Q-basis for Q⊗ZR.

Given a partition λ = (λ1 ≥ λ2 ≥ · · · ), we define di(λ) = #{s | λs = i}. and then define

zλ =
∏
i≥1

idi(λ) · (di(λ)!).

Now note that

H(t) = exp

(∑
r≥1

pr
tr

r

)
=
∏
r≥1

epr
tr

r =
∏
r≥1

( ∞∑
dr=0

(prt
r)dr

1

rdr · dr!

)
=
∑
λ

1

zλ
pλt
|λ|.

Thus, ∏
i≥1

1

1− xit
=
∑
λ

1

zλ
pλt
|λ|.

Schur functions

Given f ∈ Z[x1, . . . , xn], we define the alternation of f to be

a(f) =
∑
σ∈Sn

sign(σ)σ(f) ∈ Z[x1, . . . , xn]sign.

By last time, we know Dn | a(f). Thus, for any α = (α1, . . . , an) ∈ Zn≥0, we have that a(xα) = 0
whenever there are any i, j such that αi = αj . Also note that letting ρ = (n− 1, n− 2, . . . , 0), we
have a(xρ) = Dn.

Up to sign, we can rearrange a non-zero a(xα) so that α1 > · · · > αn. For any α, we can write
α = λ+ ρ for λ = (λ1 ≥ λ2 ≥ · · · ). Define the Schur polynomial for λ to be

sλ(x) =
a(xλ+ρ)

a(xρ)
=

det(x
λj+n−j
i )i,j

det(xn−ji )i,j

(note that the numerator resembles the Vandermonde determinant, except that we added λj ’s to
the powers).

The set {a(xα) | α = (α1 > · · · > αn)} forms a Z-basis of Z[x1, . . . , xn]sign, which (as we proved last
class) is a rank 1 free Z[x1, . . . , xn]Sn-module with Z[x1, . . . , xn]Sn-basis {Dn}. Because sλ is just
defined by dividing by a(xρ) = Dn, we have that {sλ} is a Z-basis of R.

The Cauchy identities involve the expression

XY =
1

n∏
i,j=1

(1− xiyj)

The first Cauchy identity states that

XY =
∑
λ

pλ(x)pλ(y)

zλ
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This follows from the identity ∏ 1

1− xit
=
∑
λ

1

zλ
pλt
|λ|,

where instead of x1, . . . , xn, we introduce n2 variables so that the left side becomes XY and the
right side is what we want.
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Lecture 17 (2012-11-07)

Let λ ∈ Pd. Recall the various classes of symmetric polynomials we defined last time:

eλ elementary

mλ monomial

hλ complete

pλ power sum

sλ Schur

Last time, we defined the quantity

XY =
∏
i,j≥1

1

1− xiyj
.

Proposition (2nd Cauchy identity).

XY =
∑
λ

hλ(x)mλ(y) =
∑
λ

hλ(y)mλ(x).

Proof. Recall that the generating function for the complete symmetric polynomials was

H(t) =
∏
i≥1

1

1− txi
.

Thus,

XY =
∏
j

H(yj) =
∏
j

∑
r≥0

hr(x)yrj =
∑
α∈Zn≥0

hα(x)yα =
∑
λ

hλ(x)mλ(y),

where in the last equality we grouped the α’s according to which λ they are a permutation of.

Proposition (3rd Cauchy identity).

XY =
∑
λ

sλ(x)sλ(y).

Proof. The determinantal formula says that for any α ∈ Zn≥0,

a(xα) = a(xρ) det(hαi−n+j)ij ,

where h’s with negative indices are declared to be 0, and ρ is as we defined last time,

ρ = (n− 1, n− 2, . . . , 1, 0).

Thus,

a(xα) = a(xρ)
∑
s∈Sn
β∈Zn≥0

sign(s)hβ−s(ρ)(x).

Now we use the 2nd identity to see that

a(xρ)a(yρ) ·XY = a(xρ)
∑
s∈Sn
λ

hλ(x)sign(s)ys(p)mλ(y),
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where we expanded a(yρ) as an alternation explicitly. Then

a(xρ)a(yρ) ·XY = a(xρ)
∑
α∈Zn≥0

s∈Sn

hα(x)sign(s)yα+s(ρ).

Letting β = α+ s(ρ),

a(xρ)a(yρ) ·XY = a(xρ)
∑
β,s

sign(s)hβ−s(ρ)(x)yβ,

which is precisely the expression in the determinental formula. Thus,

a(xρ)a(yρ) ·XY =
∑
β∈Zn≥0

a(xβ)yβ =
∑
µ

s∈Sn

a(xs(µ))ys(µ) =
∑
µ,s

a(xµ)sign(s)ys(µ),

where in the last step we used that a(xs(µ)) = sign(s) · a(xµ). Finally, letting µ = λ+ ρ, this is equal
to ∑

µ

a(xµ)a(yµ) =
∑
λ

a(xλ+ρ)a(yλ+ρ).

Dividing both sides by a(xρ)a(yρ) and applying the definition of the Schur polynomials, we are
done.

The Hall inner product 〈 · , · 〉 : R×R→ Q is defined by 〈hµ,mλ〉 = δλµ.

Lemma. Let {uλ} and {vλ} be a pair of bases of R. Then the following are equivalent:

1. 〈uλ, vµ〉 = δλµ

2.
∑

λ uλ(x)vλ(y) = XY .

Proof. Expanding in the basis,

uλ =
∑
ν

aλνhν , vµ =
∑
σ

bµσmσ.

Then 1 is equivalent to ∑
ν

aλνbµν = δλµ

and 2 is equivalent to ∑
λ

uλ(x)vλ(y) = XY
Cauchy 2

=
∑
ν

hν(x)mν(y).

But both of these are equivalent to the claim that the matrix of a’s is inverse to the matrix of b’s,
i.e., ∑

λ

aλνbλσ = δνσ.

Applying the 1st Cauchy identity,

XY =
∑
λ

1

zλ
pλ(x)pλ(y)
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which we proved last time, we get as a corollary of this lemma that

〈pλ, pµ〉 = zλ · δλµ.

Another corollary is that 〈sλ, sµ〉 = δλµ (by the 3rd Cauchy identity, and the lemma). Lastly, we get
as a corollary that 〈 · , · 〉 is a symmetric positive definite bilinear form (this is important because it
is defined in an a priori non-symmetric way).

Now we define an involution τ : R→ R.

Definition. Define τ : R → R by τ(er) = hr. Because these generate R as an algebra, this then
implies that τ(eλ) = hλ for all λ ∈ Pn.

Proposition. The map τ is an involution, and τ respects 〈 · , · 〉.

Proof. The action of τ is as a matrix T , and Newton’s identities tell us that

n∑
r=0

(−1)rerhn−r = 0.

Because T 2(er) = T (hr) and because Newton’s identities are symmetric under switching e’s and h’s,
we must have that T 2(er) = er, and hence T 2 = id.

You have equations expressing pr in terms of eλ’s and hλ’s from last time. These equations and
induction imply that τ(pr) = (−1)r−1pr. Thus,

〈τ(pλ), τ(pµ)〉 =

{
±〈pλ, pµ〉 = 0 if λ 6= µ,

〈pλ, pλ〉 if λ = µ.

Young diagrams

The Young diagram of a partition λ = (λ1, λ2, . . .) with |λ| = n is

λ1

λ2

...

Thus, the total number of blocks in the diagram is n.

There is a natural involution on Young diagrams, λ 7→ λt, defined by interchanging rows and
columns.

There is another determinantal formula, which is symmetric with respect to this involution:

sλ = det(eλti−i+j).

As a corollary, we get that τ(sλ) = sλt (apply involution to first determinantal formula; e’s and h’s
are interchanged, and we flip λ).

Now we’ll start relating this to the representation theory of Sn.
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Fix a field k, and consider the polynomial ring k[x1, . . . , xn].

Let {1, . . . , n} = I1 t · · · t Ik be a partition with #Ij = λj , which collectively we will call I. This
naturally corresponds to λ, a partition in the sense we’ve been using. Then we define

SI = SI1 × · · · × SIk ⊂ Sn.

We define DI to be a product of certain Vandermonde determinants of various sizes,

DI = DI1 × · · · ×DIk ,

where
DIm :=

∏
i,j∈Im

(xi − xj).

Theorem. Let char(k) = 0, and let I be a partition as above. Then Vλ := kSn ·DI is an irrep of

Sn, and in fact {Vλ | λ ∈ Pn} ∼= Ŝn.
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Lecture 18 (2012-11-09)

Recall some notation from last time: we let {1, . . . , n} = I1t· · ·tIk be a partition, which collectively
we will call I. This naturally corresponds to λ, a partition in the sense we’ve been using, by letting
λj = #Ij . We also defined a more general Vandemonde polynomial

DI = DI1 · · ·DIk ,

with

dλ := deg(DI) =
∑ λi(λi − 1)

2
.

We then defined
Vλ = kSn ·DI ⊂ kdλ [x1, . . . , xn],

a representation which is called the Specht Sn-module (Reader comment: this is actually what most

references call the Specht module of λt. The module V λ = Vλt we later construct is the Specht module for λ).
The subgroup

SI = SI1 × · · · × SIk ⊂ Sn
is called a Young subgroup.

Theorem.

1. Vλ is irreducible.

2. Vλ 6∼= Vµ for λ 6= µ.

3. Any irrep of Sn is isomorphic to some Vλ.

Proof. We’ll assume that k ⊆ C, though it holds in more generality. It will suffice to show that Vλ
is simple for k = C, since extending the field can only cause it to split more.

Suppose Vλ = V ⊕ V ′ is a non-trivial Sn-stable decomposition. Then prV ∈ EndC(Vλ). To reach a
contradiction, we will show that every intertwiner f : Vλ → Vλ is a scalar operator. Let f be an
intertwiner; then

f(DI) = D′ ∈ kdλ [x1, . . . , xn]

for some D′. We have s(DI) = sign(s) · DI for all s ∈ SI , so s(D′) = sign(s) · D′ for all s ∈ SI
because f is an intertwiner. Thus, for all i, j ∈ Ir for any r, we have that sij(D

′) = −D′, so D′

vanishes on the set
{(a1, . . . , an) ∈ Cn | ai = aj},

hence (xi − xj) | D′, and because we are working in a UFD,( k∏
p=1

∏
i,j∈Ip

(xi − xj)
)
| D′,

so that DI | D′. But DI and D′ are homogeneous polynomials of degree dλ, so D′ = c ·DI for some
c ∈ C. Thus f(DI) = c ·DI , and so for any a ∈ CSn, we have

f(aDI) = a · f(DI) = c · a ·DI ,

and hence f = c · id.
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The same argument shows that there are no interwiners between Vλ and Vµ if λ 6= µ.

The conjugacy classes of Sn are indexed by Pn. Thus, the number of conjugacy classes is #Pn = #Ŝn.
This proves (3).

Corollary.

1. [kd[x1, . . . , xn] : Vλ] =

{
1 if d = dλ,

0 if d < dλ.

2. The representation Vλ is defined over Q.

3. Vλ ∼= V ∗λ .

Proof. There exists an Sn-invariant, positive definite Q-bilinear form β on Vλ (considered as a
vector space over Q), and the map from V → V ∗ sending v to β(−, v) is a Q-linear function (we
can’t do this over C because it’d be skew-linear).

Fix a group G and a commutative ring Z (which in most cases will in fact be Z).

Definition. The Grothendieck group KZ(G) is defined as follows. Take M , the free Z-module
with basis consisting of isomorphism classes [V ] of finite-dimensional, completely reducible G-
representations V , and quotient M by the relation [V ⊕ V ′]− [V ]− [V ′].

Note that, for example, if V = Lm1
1 ⊕ · · · ⊕ Lmkk where Li ∈ Ĝ, we have

[V ] = m1[L1] + · · ·+mk[Lk].

Thus, we could also think of KZ(G) as being the free Z-module with basis [Li], for each Li ∈ Ĝ.
Note that any element of KZ(G) can be put in the form [M ]− [N ] by looking at the terms with
positive or negative coefficients and grouping them.

For an example, note that if G = {e}, then KZ({e}) = Z, where [V ]↔ dim(V ).

Let G be a finite group. We define an inner product KZ(G)×KZ(G)→ Z by

〈[L], [L′]〉 =

{
1 if L ∼= L′,

0 if L 6∼= L′.

Alternatively, we can define
〈[M ], [N ]〉 = dim(HomG(M,N)).

Moreover, KZ(G) has a commutative ring structure, by [M ][N ] = [M ⊗N ]. This is valid because
M ⊗ (N1⊕N2) ∼= (M ⊗N1)⊕ (M ⊗N2). The unit for the multiplication is the trivial representation.

Define χ : KC(G)→ C{G}G by sending [M ] to χM . We know that χM⊗N = χM · χN , so that χ is
a ring homomorphism.

Proposition. χ is in fact an isometric ring isomorphism.

Proof. This follows directly from the orthogonality relations for irreducible characters, and the fact
that the irreducible characters are a basis for the space of class functions.

Now let G = Sd, and let Rd be the homogeneous symmetric functions of degree d (in a large,
unspecified number of variables). We define ψ : Sd → Rd by ψ(s) = pλ(s), where λ(s) is the cycle
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type of s. Now we define a map on the space of class functions, Ψ : C{Sd}Sd → Rd, by

Ψ(f) =
1

d!

∑
s∈Sd

f(s)ψ(s)

We often refer to this as 〈f, ψ〉Sd , even though ψ is not the same kind of object as f .

Lemma. If s ∈ Cλ (i.e., s has cycle type λ) then

#(centralizer of s) = zλ.

This then implies that #Cλ = #Sd
#(centralizer) = d!

zλ
.

Corollary. Ψ(1Cλ) = z−1
λ pλ

A key map we will talk about next class is the Frobenius characteristic map

ch : KC(Sd)
χ−−→ C{Sd}Sd

Ψ−−→ Rd

defined by sending [M ] to 〈χM , ψ〉Sd .
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Lecture 19 (2012-11-12)

Using the notation from last time, KZ(Sd) is the Grothendieck group of finite-dimensional Sd-
representations over a commutative ring Z.

We can make a commutative ring structure on

KZ =
⊕
d≥0

KZ(Sd)

by defining the circle product ◦ : KZ(Sm) × KZ(Sn) → KZ(Sm+n) as follows: we consider the
natural inclusion j : Sm × Sn → Sm+n, and for any M and N (representations of Sm and Sn,
respectively), we define

M ◦N = Ind
Sm+n

Sm×SnM �N.

More generally, given λ = (λ1 ≥ λ2 ≥ · · · ) ∈ Pn, we define

Sλ = Sλ1 × Sλ2 × · · · ,

and given representations Mi over each Sλi , we can form

M1 ◦M2 ◦ · · · ◦Mk = IndSnSλ(M1 �M2 � · · ·�Mk).

Lemma. The circle product is associative and commutative, and thus KZ is a commutative
associative ring.

Proof. Let M , N , and L be representations of Sm, Sn, and S` respectively. Then directly from the
definition,

(M ◦N) ◦ L = Ind
Sm+n+`

Sm×Sn×S`(M �N � L) = M ◦ (N ◦ L).

Commutativity follows from the fact that inducing from two subgroups which are conjugate to one
another gives the same result, so

Ind
Sm+n

Sm×Sn(M �N) = Ind
Sm+n

Sn×Sm(N �M).

Frobenius characteristic

We define the Frobenius characteristic map chn : KC(Sn)
χ−−→ C{Sn}Sn

Ψ−−→ C⊗Z R (where R is
the ring of symmetric functions5, complexified by tensoring with C) by sending [M ] to

1

n!

∑
s∈Sn

χM (s) · pλ(s).

Then we let ch be the sum of all these maps,

ch =

(⊕
n≥0

chn

)
: KC → C⊗Z R.

5Reader believes that everything works out if we take R to be R∞ as defined in Lecture 16
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Theorem.

1. The map ch restricts to a ring isomorphism (KZ, ◦)→ R.

2. The map ch is an isometry.

3. The map ch takes sign⊗ (−) to τ , i.e. ch(sign⊗M) = τ(ch(M)).

4. The map ch acts as follows, for all λ ∈ Pn:

• Vλ 7−→ sλt

• IndSnSλ(triv) 7−→ hλ

• IndSnSλ(sign) 7−→ eλ

Remark. Let j : H ↪→ G be a group embedding. Let E and F be representations of H and G,
respectively. Then there is a canonical isomorphism

HomG(IndGH E,F ) ∼= HomH(E, j∗F ).

Thus, for any class function f ∈ C{G}G,

〈χIndGH E , f〉G = 〈χE , f |H〉H .

This is the key ingredient in the proof of the first statement; the rest is just the definitions.

Proof of 1 (ring homomorphism). Let M and N be representations of Sm and Sn, respectively.
Then

ch(M ◦N) = Ψ(χ(Ind
Sm+n

Sm×Sn(M �N)))

= 〈χ
Ind

Sm+n
Sm×Sn (M�N)

, ψ〉Sm+n

(by remark) = 〈χM�N , ψ|Sm×Sn〉Sm×Sn

=
1

m!

1

n!

∑
s∈Sm
s′∈Sn

χM�N (s× s′) · ψ(s× s′)

=
1

m!n!

∑
s,s′

χM (s)χN (s′)pλ(s×s′).

Note that, for any µ ∈ Pm and ν ∈ Pn, we have pµtν = pµ · pν . The cycle type λ(s × s′) is just
λ(s) t λ(s′), and therefore pλ(s×s′) = pλ(s) · pλ(s′).

=
1

m!n!

∑
s,s′

χM (s)χN (s′)pλ(s)pλ(s′)

=

[
1

m!

∑
s∈Sm

χM (s)pλ(s)

] 1

n!

∑
s′∈Sn

χN (s′)pλ(s′)


so we have shown ch is a ring homomorphism. We will show it is an isomorphism next lecture.
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Proof of 2. We showed that χ was an isometry last time, so it will suffice to show that Ψ is an
isometry because ch = χ ◦Ψ.

For any λ, µ ∈ Pn, we take the Hall inner product

〈Ψ(1Cλ),Ψ(1Cµ)〉Hall.

We know that Ψ(1Cλ) = z−1
λ · pλ, so we compute

〈Ψ(1Cλ),Ψ(1Cµ)〉Hall = 〈z−1
λ · pλ, z

−1
µ · pµ〉 = z−1

λ z−1
µ 〈pλ, pµ〉

=

{
z−1
λ if λ = µ,

0 if λ 6= µ
= 〈1Cλ ,1Cµ〉

Proof of 3. Write the character χM =
∑

λ∈Pn χ(Cλ) · 1Cλ so that

ch(M) =
∑
λ∈Pn

χ(Cλ) · z−1
λ · pλ.

We have τ(pd) = (−1)d−1 · pd and taking product, τ(pλ) = (−1)
∑

(λi−1) · pλ. Thus,

τ(ch(M)) =
∑
λ∈Pn

χ(Cλ) · z−1
λ (−1)

∑
λi−1 · pλ

Note that
sign(cycle of length d) = (−1)d−1,

so
sign|Cλ = (−1)

∑
(λi−1).

Thus
χsign⊗M =

∑
λ∈Pn

χsign⊗M (Cλ)1Cλ =
∑
λ

χM (Cλ) · (−1)
∑

(λi−1)1Cλ ,

and therefore

ch(sign⊗M) =
∑
λ

χ(Cλ)(−1)
∑
λi−1Ψ(1Cλ) =

∑
λ

χ(Cλ)(−1)
∑

(λi−1)z−1
λ pλ

which is exactly the expression we wanted.

Proof of 4. Let’s compute the Frobenius character of the trivial representation.

ch(trivn) =
∑
λ∈Pn

z−1
λ pλ = hn ∈ R.

For the sign representation, we just get

ch(sign) = τ(hn) = en.

Using the fact that ch is a homomorphism (which we just proved),

ch(IndSnSλ(triv)) = ch(trivλ1 ◦ trivλ2 ◦ · · · )
= ch(trivλ1)ch(trivλ2) · · ·
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= hλ1hλ2 · · ·
= hλ.

For any λ ∈ Pn, we define an alternating sum in the Grothendieck group,

V λ =
∑
s∈Sn

sign(s)
[
IndSnSλ+ρ−s(ρ)

(triv)
]

so that

ch(V λ) =
∑
s∈Sn

sign(s)ch(Ind · · · )

=
∑
s∈Sn

sign(s) · hλ+ρ−s(ρ)

determinantal
identity

= sλ.

Therefore
〈V λ, V µ〉 = 〈ch(V λ), ch(V µ)〉Hall = 〈sλ, sµ〉Hall = δλµ,

and in particular,
〈V λ, V λ〉 = 1

which implies that either V λ or −V λ (this sign is in the Grothendieck group) is an actual irrep.
Next time we will see that Vλ = V λt , which finishes the proof.
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Lecture 20 (2012-11-14)

Last time we constructed a ring homomorphism from the Grothendieck group KZ =
⊕

nKZ(Sn) to

the ring R by sending V λ to sλ. We showed that for all λ ∈ Pn, either ±V λ ∈ Ŝn.

It remains to show that this map is an isomorphism. We see that ch is surjective, since the Schur
functions form a Z-basis of R, and sλ ∈ im(ch). The map ch is injective, as it is an isometry.

Corollary. χV λ(cµ) = 〈sλ, pµ〉Hall

Proof. We have

sλ = ch(V λ) =
∑
µ∈Pn

z−1
µ χV λ(cµ)pµ,

so
〈sλ, pν〉 =

∑
µ

z−1
µ χV λ(cµ)〈pµ, pν〉 = χV λ(cµ).

There are three main ways partitions come up in what we’ve been doing.

partitions

reps of Sn

nilpotent conjugacy
classes in Mn(C)

reps of GLn(C)

Schur-Weyl duality

We define a partial order on partitions. Given λ = (λ1, . . .), µ = (µ1, . . .) ∈ Zn, we say λ ≤ µ if
λ1 ≤ µ1, and λ1 + λ2 ≤ µ1 + µ2, . . ., and λ1 + · · ·+ λn ≤ µ1 + · · ·+ µn.

Define Oλ to be the nilpotent conjugacy class with Jordan blocks λ1, . . . , λn.

Proposition.

1. Oλ ⊆ Oµ ⇐⇒ λ ≤ µ.

2. λ ≤ µ ⇐⇒ µt ≤ λt.

3. s(ρ) < ρ for all non-identity s ∈ Sn.

Proposition.

1. [IndSnSµ triv : V λ] =

{
0 unless µ ≤ λ,
1 if µ = λ.

2. [IndSnSµ sign : V λ] =

{
0 unless µ ≤ λt,
1 if µ = λt.

3. V λ = Vλt
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Proof.

V λ =
∑
s∈Sn

sign(s) ·
[
IndSnSλ+ρ−s(p)

(triv)
]

= IndSnSλ(triv) +
∑
µ>λ

aλµ

[
IndSnSµ(triv)

]
The transition matrix from IndSnSµ to V λ is of the form

1 ∗ · · · ∗

1
. . .

...
. . . ∗

1


with respect to the partial ordering. The inverse of a strict upper triangular matrix is also strictly
upper triangular, so

IndSnSλ(triv) = V λ +
∑
µ>λ

bλµ · V µ

which proves part 1. Part 2 follows from part 1 by applying ch and τ .

Thus V λ is the unique irrep of Sn which occurs both in IndSnSλ(triv) and IndSnSλt
(sign).

Now we claim that Vλ occurs in IndSnSλt
(triv) and IndSnSλ(sign). Recall that a λ ∈ Pn corresponds to

Dλ = Dλ1 ·Dλ2 · · ·

and s(Dλ) = sign(s) ·Dλ for all s ∈ Sλ, so there exists a surjective map IndSnSλ(sign)→ Vλ, sending

1 to Dλ. Because Vλ is simple, this implies that Vλ occurs in IndSnSλ(sign).

In our notation, Dn = a(xρ), so that

Dλ = a(xρλ1 )a(xρλ2 ) · · ·

λ1

λ2

x1 x2

...

0

0

0

1

1

1

2

2

2

λ1 − 1

Expanding the product and counting along columsn instead of rows (see diagram), we have

Dλ = (x1xλ1+1xλ1+λ2+1 · · · )0(x2xλ1+2xλ1+λ2+2 · · · )1 · · ·

Therefore Sλt acts trivially on Dλ with coordinates transposed, i.e., we get a nonzero map j :
IndSnSλt

(triv)→ Vλ. This shows Part 3.
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Representation theory of Sn and GLm

Let V be a finite-dimensional C-vector space. For any n ≥ 1, we have a natural action Sn
œ

V ⊗n.
We let j : EndC(V )→ EndC(V ⊗n) be the Lie algebra action defined by

a(v1 ⊗ v2 ⊗ · · · ⊗ vn) = (av1)⊗ v2 ⊗ · · · ⊗ vn + v1 ⊗ (av2)⊗ · · · ⊗ vn + · · ·

Lemma. EndSn(V ⊗n) is the algebra generated by im(j).

Proof. The inclusion ⊇ is clear.

Now we will show the other inclusion. First, we claim

End(V ⊗n) ∼= End(V )⊗n

⊇

End(V ⊗n) = V ⊗n ⊗ (V ⊗n)∗

= V ⊗n ⊗ (V ∗)⊗n

= (V ⊗ V ∗)⊗n

= (End(V ))⊗n

Second, we see that

EndSn(V ⊗n) = (End(V ⊗n))Sn = ((End(V ))⊗n)Sn .

Third, we know from the homework that (A⊗n)Sn is generated by elements of the form

(a⊗ 1⊗ · · · ⊗ 1) + (1⊗ a⊗ · · · ⊗ 1) + · · ·

for any algebra A, and thus this is true in particular for A = End(V ).
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Let V be a finite-dimensional vector space over C, and consider the tensor power V ⊗n. We have
two natural actions, Sn

œ

V ⊗n ö GL(V ), where Sn permutes tensorands, and g ∈ GL(V ) acts by

g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn.

This gives us maps

Sn EndC(V ⊗n) GL(V )
j1 j2

Let A(Sn) be the C-linear span of im(j1), and similarly let A(GL) be the C-linear span of im(j2).

Theorem (Schur-Weyl duality).

1. Inside EndC(V ⊗n), we have A(Sn)! = A(GL) and A(GL)! = A(Sn).

2. If dim(V ) ≥ n, then each irrep of Sn occurs in V ⊗n, and in particular,

V ⊗n =
⊕
λ∈Pn

Vλ ⊗ Lλ

where the Vλ are the Specht modules and the Lλ are mutually non-isomorphic GL(V )-irreps.

Proof of 1. Clearly, A(GL) ⊆ A(Sn)!; the non-trivial part is the other inclusion. The argument we
will use is an illustration of Lie theory.

Consider a ∈ EndC(V ). Then eta ∈ GL(V ) for any t ∈ C, so that j2(eta) ∈ A(GL) for all t ∈ C.
Applying it to a simple tensor,

j2(eta)(v1 ⊗ · · · ⊗ vn) = eta(v1)⊗ · · · ⊗ eta(vn)

= (v1 + ta(v1) + o(t))⊗ · · · ⊗ (vn + ta(vn) + o(t))

= (v1 ⊗ · · · ⊗ vn) + t

(
n∑
i=1

(v1 ⊗ · · · ⊗ avi ⊗ · · · ⊗ vn)

)
+ o(t)

Taking the derivative with respect to t and evaluating at 0, we see that

(a⊗ 1⊗ · · · ⊗ 1) + (1⊗ a⊗ · · · ⊗ 1) + · · · ∈ A(GL)

for all a ∈ End(V ). (Since A(GL) is a finite dimensional vector space, it is topologically closed.) By
the lemma from last time, the elements of the above form generate the algebra EndSn(V ⊗n) = A(Sn)!.

Since CSn is a semisimple algebra, we have that A(Sn) is a semisimple algebra, and you will
show on the homework that this implies A(Sn)! is semisimple, hence A(GL) is semisimple, hence
A(Sn) = A(Sn)!! = A(GL)!.

Proof of 2. We want to show that there is a copy of the regular representation of Sn on V ⊗n if
dim(V ) ≥ n. Let {v1, . . . , vd | d ≥ n} be a C-basis of V , and let s ∈ Sn. Then the elements

vs(1) ⊗ · · · ⊗ vs(n) ∈ V ⊗n

span a copy of CSn.
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Jacobson density

Let X and Y be sets, and consider Map(X,Y ). We equip this with the pointwise topology, which is
defined as follows. For f ∈ Map(X,Y ), a basis of open neighborhoods of f is given by, for all n ≥ 1
and x1, . . . , xn ∈ X,

Ux1,...,xn = {f ′ : X → Y | f ′(xi) = f(xi) for all i = 1, . . . , n}.

Thus, fi → f if and only if, for any x ∈ X, we have fi(x) = f(x) for all i� 0.

Let A be a ring, and let M be an A-module; equivalently, we have an action map A→ EndZ(M).
We have

A→ AM := im(action) ↪→ A!!
M .

Theorem (Jacobson density). If M is a semisimple A-module, then AM is pointwise dense in A!!
M ;

in other words, for any A!
M -linear map f : M →M and any collection m1, . . . ,mn ∈M , there is

an a ∈ A such that f(m1) = am1 for all i = 1, . . . , n.

Example. Let A = k, so that M is a vector space over k, say with dim(M) = n. Then k! = A!
M =

Mn(k), and so k!! = A!!
M = Mn(k)! = k.

Lemma. Let A be a ring, and let L be an A-module. Let M = Ln. Then A!!
Ln
∼= A!!

L.

Example. Let L = A. Then A!
L = Aop, so that A!!

L = (Aop)op = A. Thus, the lemma implies that
(AAn)!! = A, so we see that the fact that k was a field in our earlier example was unnecessary.

Proof of Lemma. First, recall that we proved a long time ago,

A!
Ln = EndA(Ln) = Mn(EndA(L)) = Mn(A!

L).

Second, note that, if L is a B-module, then Ln has a Mn(B)-module structure, and

EndMn(B)(L
n) = {diag(a, . . . , a) | a ∈ EndB(L)︸ ︷︷ ︸

:=B!
L

}.

Third, we therefore have that (ALn)!! = (Mn(A!
L))!. We have B = A!

L, and by our second observation,

(ALn)!! = (Mn(A!
L))! = {diag(a, . . . , a) | a ∈ (A!

L)! = A!!
L}.

Example. Let A = Md(k), and let L = kd. Let n ≥ 1, so that Ln = (kd)n can be identified with
the d × n matrices over k. Then A = Md(k) acts on the left on Ln, and A! = Mn(k) acts on the
right, and

(kd)n = (kn)d =⇒ A!! = Md(k).

Let L be a finite-dimensional vector space over k. Let A = Endk(L), and let M be a finitely
generated A-module (we know M ∼= Ln for some n, but we ignore this for now). We have an
evaluation map

ev : L⊗HomA(L,M)︸ ︷︷ ︸
L♦

∼−−→M,

and
Endk(L⊗ L♦) = End(L)⊗ End(L♦).

Then A = End(L)⊗ 1 and A! = 1⊗ End(L♦).
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Now let’s prove the theorem we stated last time,

Theorem (Jacobson density). If M is a semisimple A-module, then AM is pointwise dense in A!!
M ;

in other words, for any A!
M -linear map f : M →M and any collection m1, . . . ,mn ∈M , there is

an a ∈ A such that f(m1) = am1 for all i = 1, . . . , n.

Proof. Let M be a semisimple A-module, f : M →M an A!
M -module map, and m1, . . . ,mn ∈M a

collection of elements. We want to find a ∈ A such that f(mi) = ami for all i.

First, consider the case n = 1: the submodule Am ⊂ M has a direct summand M ′ ⊂ M such
that M = Am⊕M ′ since M is semisimple. Let p : M → Am denote the first projection, which is
A-linear and hence p ∈ A!

M . Therefore f and p commute, so f(m) = f(p(m)) = p(f(m)) implies
f(m) ∈ Am, i.e., there exists a ∈ A such that f(m) = am.

In the general case, we use a diagonal trick. Consider Mn, which is still a semisimple A-module,
and let x = (m1, . . . ,mn) ∈Mn. By the lemma from last lecture, the map f 7→ diag(f, . . . , f) =: F

is an isomorphism A!!
M

∼=−−→ A!!
Mn . The n = 1 case implies there exists a ∈ A such that F (x) = ax.

Equivalently, f(mi) = ami for all i.

Corollary 1. Let M be a semisimple A-module. Assume that M is finitely generated over A!
M .

Then A!!
M = AM .

Proof. Let M = A!
Mm1 + · · ·+A!

Mmn. Let f ∈ A!!
M . By Jacobson density, there exists a ∈ A such

that f(mi) = ami for i = 1, . . . , n. Given m ∈M we can write m = b1m1 + · · ·+ bnmn for bi ∈ A!
M .

Hence f(m) = f(
∑
bimi) =

∑
bif(mi) =

∑
biami =

∑
abimi = am.

Corollary 2. Let A be an algebra over k = k̄. Let M be a simple finite dimensional A-module.
Then actM : A→ Endk(M) is surjective.

Proof. Since M is simple and k is algebraically closed, A!
M = k by Schur’s lemma. Corollary 1

implies A!!
M = AM but A!!

M = k! = Endk(M), so AM = Endk(M).

Theorem (Burnside’s theorem). Let M be a finite-dimensional vector space over an algebraically
closed field k. Let A ⊂ Endk(M) be a subalgebra such that there is no A-stable subspace in M other
than 0 and M itself. Then A = Endk(M).

Proof. Corollary 2 implies actM : A→ Endk(M) is surjective, hence it is an isomorphism.

The Jacobson radical

The following page was included in Homework 8:
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1. The Jacobson Radical

Let A be an arbitrary ring. Given a left A-module M , and m ∈ M , define AnnM (m) = {a ∈
A | a · m = 0}. This is a left ideal in A. The map a �→ a · m gives a morphism A → M , of left
A-modules. Hence, we obtain an A-module embedding A/AnnM (m)→ M .
We put AnnM =

�
m∈M AnnM (m). Equivalently, AnnM is the kernel of the ring homomorphism

A → EndZ M, a �→ actM (a). Thus, AnnM is a two-sided ideal in A.
Let SA be the set of isomorphism classes of simple A-modules. The following result gives various

equivalent definitions of the Jacobson Radical:

Theorem 1. For any ring A, the following 7 sets are equal:
• (1): {a ∈ A | ∀x, y ∈ A, 1 + xay is invertible}
• (2L) {a ∈ A | ∀x ∈ A, 1 + xa has a left inverse}
• (2R) {a ∈ A | ∀x ∈ A, 1 + ax has a right inverse}
• (3L) The intersection of all maximal left ideals in A.
• (3R) The intersection of all maximal right ideals in A.
• (4L) �

L∈SA
Ann L

• (4R) The intersection of the annihilators of all simple right A-modules.
The set J(A) defined by these conditions is a two-sided ideal in A, thanks to (4L)-(4R), called the
Jacobson Radical of A.

Proof. We will prove 4L ⇐⇒ 3L ⇐⇒ 2L ⇐⇒ 1. The corresponding claims for ‘R’ will follow.
(4L ⇐⇒ 3L): LetM = {(M,m) | M ∈ SA, m ∈ M � {0}}. Define a map fromM to the set

of maximal left ideals by (M,m) �→ AnnM (m). This map is surjective since simple A-modules are
precisely the A-modules of the form A/I for a maximal left ideal I of A. Hence, the intersection of
all maximal left ideals of A is equal to

�

(M,m)∈M
AnnM (m) =

�

M∈SA

�

m∈M�{0}
AnnM (m) =

�

M∈SA

AnnM .

We note that the rightmost intersection above is clearly a two-sided ideal.
(3L ⇐⇒ 2L): a ∈ A has no left inverse iff it is contained in a proper left ideal iff it is contained

in a maximal left ideal.
Let L be the set of elements a ∈ A such that 1 + xa has a left inverse for all x ∈ A. Let

a ∈ L and assume there is a maximal left ideal I not containing a. Then Aa + I = A ⇒ 1 =
xa + y (for some x ∈ A, y ∈ I) ⇒ y = 1 + xa. Since a ∈ L, then y has a left inverse, which is
impossible since it is in I. Therefore, L ⊆ I for all maximal left ideals I.
Conversely, assume a is in all maximal left ideals, but there is x such that 1 + xa has no left

inverse. Then 1 + xa is in some maximal left ideal I. But xa is also in this ideal, so 1 is in this
ideal, a contradiction.
From above, we deduce that the set L is a two-sided ideal. We will use this in the next step:
(2L ⇐⇒ 1): Let a� ∈ L and for arbitrary x, y ∈ A set a = xa�y. Then a ∈ L since L is a

two-sided ideal. Hence, 1+ a has a left inverse b, so b(1+ a) = 1⇒ b = 1− ba. Since a ∈ L, then b
has a left inverse c, so that cb = 1. But c = c ·1 = c(b(1+a)) = cb(1+a) = 1+a. Thus (1+a)b = 1,
so 1 + a has a two-sided inverse, whence (2L)⇒ (1). The reverse inclusion is clear. �
Lemma 2 (Nakayama lemma). Let M be a finitely-generated A-module such that J(A) ·M = M .
Then M = 0.

Proof. Find a minimal generating set m1, . . . , mn. Then we have M = J(A) · M =
�

J(A)mi.
Then we may write mn = j1m1 + . . . + jn−1mn−1 + jnmn for ji ∈ J(A). But then we have
(1 − jn)mn = j1m1 + . . . + jn−1mn−1. Since jn ∈ J(A), then 1 − jn is invertible, so that mn is
actually in the span of {mi | i < n}, so we have a smaller generating set, a contradiction. �

3



Lemma. J(A/J(A)) = 0.

Proof. Simple A-modules are also simple A/J(A)-modules, so we are done by definition (4L).

Definition. Given a left/right/2-sided ideal I ⊂ A,

1. we say I is nil if any a ∈ I is nilpotent, and

2. we say I is nilpotent if there exists n such that In = 0, which is equivalent to requiring
a1 · · · an = 0 for all a1, . . . , an ∈ I.

Lemma.

1. If I, J are nilpotent, then I + J is also nilpotent.

2. Any nil ideal is contained in J(A).

Proof of 1. Suppose Im = 0 and Jn = 0. We claim that (I + J)m+n = 0. We can see this as follows:
if we take a1, . . . , am+n ∈ I ∪ J , then there will be either ≥ m elements ai ∈ I or ≥ n elements in J .
Assume WLOG that ai1 , . . . , aim ∈ I. Then a1 · · · am+n = (· · · ai1)(· · · ai2) · · · (· · · aim) · · · am+n = 0
since I is an ideal.

Proof of 2. If I is a left nil ideal, then a ∈ I implies that xa ∈ I for all x ∈ A. Hence xa is nilpotent,
so 1 + xa is invertible. Therefore by (2L) a ∈ J(A).
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Theorem. Let A be a finite-dimensional algebra over k. Then

1. J(A) is the maximal nilpotent ideal of A, i.e., J(A) is a nilpotent ideal and it contains any
other nilpotent ideal.

2. A/J(A) is a semisimple algebra.

3. A has only finitely many maximal two-sided ideals.

4. J(A) =
⋂

maximal two-sided ideals.

Proof of 1. Let J := J(A). We have a decreasing chain of two-sided ideals A ⊃ J ⊃ J2 ⊃ J3 ⊃ · · · ,
which must stabilize since A is finite-dimensional (hence Artinian). Therefore there exists N � 0
such that JN+1 = JN . Since JN is a finitely generated A-module, Nakayama’s lemma implies that
JN = 0, so J is nilpotent.

Proof of 2. J(A/J(A)) = 0 so by Problem 6 of Homework 8, we know A/J(A) is semisimple.

Proof of 3. Wedderburn’s theorem implies that A/J(A) = A1 ⊕ · · · ⊕An where Ai = Mri(Di) is a
simple algebra. Any two-sided ideal I ⊂

⊕
Ai has the form I = I1⊕· · ·⊕ In where In is a two-sided

ideal in Ai. The maximal ideals in A/J(A) are A1 ⊕ · · · ⊕Ai−1 ⊕ 0⊕Ai+1 ⊕ · · · ⊕An.

We claim that if a is a maximal two-sided ideal in A, then J(A) ⊂ a. If this were not the case,
then J(A) + a = A. Hence 1 = j + a for some j ∈ J(A), a ∈ a. But then a = 1− j is invertible, a
contradiction.

In general, we have a bijection

{maximal two-sided ideals of A containing J(A)} ←→ {maximal two-sided ideals of A/J(A)}.

Thus, the number of maximal two-sided ideals is finite.

Proof of 4. This is clear from our description of maximal ideals in A/J(A) from part 3.

Remark. Let A be a ring, J ⊂ A a two-sided ideal, and M a left (resp. right) A-module. Then
M/JM = (A/J)⊗AM (resp. M/MJ = M ⊗A (A/J)) is a left (resp. right) (A/J)-module.

Theorem. Let A be a finite-dimensional algebra over an algberaically closed field k. Let J = J(A),
and define Ā := A/J . Then A ∼= (TĀ(J/J2))/I where I is a two-sided ideal in the tensor algebra
satisfying

T≥2(J/J2) ⊇ I ⊇ T≥N (J/J2)

for sufficiently large N .

Corollary. Let A be finite-dimensional over an algebraically closed field k such that

Ā = A/J(A) = k ⊕ · · · ⊕ k︸ ︷︷ ︸
n times

.

Then there exists a finite quiver Q with vertex set {1, . . . , n} such that A = kQ/I with (kQ)≥2 ⊇
I ⊇ (kQ)≥N for some sufficiently large N .

Proof. By the remark, E := J/J2 is an A/J-bimodule. Since A/J is a direct sum of fields, we have
a decomposition E =

⊕
Eij . Define the quiver Q so that E corresponds to the paths.
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Proof of Theorem 2. The proof proceeds in several steps.

Step 1: We claim that there exists a section ε : Ā→ A, i.e. that there exists a subalgebra A′ ⊂ A
such that A′ ↪→ A→ Ā is an isomorphism.

Lemma (Lifting of idempotents). If J ⊂ A is a nilpotent two-sided ideal, let ē1, . . . , ēn
be a collection of orthogonal idempotents, i.e., ēi · ēj = δij ēi. Then there exist orthogonal
idempotents ei ∈ A such that ei mod J = ēi for all i = 1, . . . , n.

The above is Corollary 7.5 of Etingof’s Introduction to representation theory and we omit the proof.

Since Ā is semisimple over an algebraically closed field, it is a direct sum of matrix algebras⊕
` Mn`(k). Let ē`,ij denote the matrix with a 1 in the (i, j) position as an element of Mn`(k). Then

{ē`,ii} forms a collection of orthogonal idempotents in Ā, so by the lemma we can lift them to
orthogonal idempotents in e`,ii ∈ A. Since

∑
`,i e`,ii ∈ 1 + J is idempotent and invertible, it is 1. Let

e` =
∑

i e`,ii. Then e`Ae` are orthogonal subalgebras of A for distinct `. Hence it suffices to lift each
Mn`(k) to e`Ae`. We therefore drop the ` subscript and assume

∑
eii = 1.

Suppose that for I a two-sided square-zero ideal of A, we can lift a matrix subalgebra of A/I
to A. Then applying this to the sequence A = A/JN → A/JN−1 → · · · → A/J = Ā with
I = J i/J i+1 ⊂ A/J i+1, we are done. To prove the square-zero case, i.e., Ā = A/I and I2 = 0: first
take an arbitrary lift ei,i+1 ∈ A of ēi,i+1 ∈ Ā. By multiplying on the left by 1− ejj for j 6= i and on
the right by 1− ejj for j 6= i+ 1, we get ejjei,i+1 = δij and ei,i+1ejj = δi+1,j . Do the same for ei+1,i.
Then ei,i+1ei+1,i − eii ∈ I implies

(ei,i+1ei+1,i − eii)2 = ei,i+1(r − ei+1,i) + eii = 0

where r = ei+1,iei,i+1ei+1,i − ei+1,i ∈ I. Thus ei,i+1(ei+1,i − r) = eii. The analogous computation
shows that (ei+1,i − r)ei,i+1 = ei+1,i+1. Replacing ei+1,i with ei+1,i − r, we can assume that

ei+1,iei,i+1 = ei+1,i+1, ei,i+1ei+1,i = eii.

Now set eij = ei,i+1ei+1,i+2 · · · ej−1,j and eji = ej,j−1 · · · ei+1,i for i < j. One sees that the span of
{eij} is isomorphic to Mn(k) as algebras.

Step 2: The projection J → J/J2 is an Ā-bimodule map, where Ā acts on J via ε. We want to show
that there exists an Ā-bimodule section J/J2 → J .

Let M = J/J2. Keeping the notation from Step 1, it suffices to lift e`Mem to e`Jem. Note that an
(Mn`(k),Mnm(k))-bimodule is the same as an Mn`(k)⊗Mnm(k)op ∼= Mn`(k)⊗Mnm(k) ∼= Mn`nm(k)-
module. Any such module is a direct sum of the simple module kn`nm . Decompose M into a direct
sum of simple modules and lift one vector from each summand. The Ā ⊗ Āop-span of these lifts
gives the desired section.

Step 3: Let f : Ã→ A be an algebra homomorphism. Let J̃ ⊂ Ã and J ⊂ A be two-sided nilpotent
ideals such that (i) f(J̃) ⊂ J , (ii) Ã/J̃ → A/J is surjective, and (iii) J̃/J̃2 → J/J2 is surjective.
Then f is surjective.

This claim just follows by induction (think J-adic completion).
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Finishing the proof: Steps 1 and 2 give maps ε : Ā → A and J/J2 ↪→ J ↪→ A. The universal
property of tensor algebras6 gives an algebra map f : T := TĀ(J/J2) → A. Then f(T≥1) ⊂ J
implies f(T≥i) ⊂ J i for all i ≥ 1. In particular, since JN = 0 for some N , we get f(T≥N ) ⊂ JN = 0.
Hence T≥N ⊂ ker(f) =: I. On the other hand, our construction of f gives a commutative diagram

T/T≥2 A/J2 (Ā⊕ J)/J2

Ā⊕ (J/J2) Ā⊕ (J/J2)

f

∼= ∼=

id

which shows that if a ∈ I, then f(a mod T≥2) = 0 implies a mod T≥2 = 0, i.e. that a ∈ T≥2. Hence
I ⊂ T≥2.

Lastly, apply Step 3 to Ã = T and J̃ = T≥1 to conclude the theorem.

6The universal property says that if Ā→ A is an algebra homomorphism, M an Ā-bimodule, and f : M → A an
Ā-bimodule map, then there exists a unique algebra map TĀM → A extending f .
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Today, we’ll discuss a trick that will let us extend some of our results about finite-dimensional
algebras to some infinite-dimensional algebras.

Definition. An algebra is said to be ‘‘nice’’ (this isn’t standard terminology) if it is a C-algebra of
at most countable dimension over C.

Clearly, a subalgebra or a quotient of a nice algebra is nice, and any finitely generated C-algebra is
nice because it is a quotient of some C〈x1, . . . , xn〉, which has a countable basis.

Recall that for an algebra A and a ∈ A, we defined spec(a) = {λ ∈ C | a− λ is not invertible}.

Theorem (Spectral theorem). Let A be a nice algebra, and let a ∈ A. Then

1. a is nilpotent ⇐⇒ spec(a) = {0}.

2. a is algebraic ⇐⇒ spec(a) is a non-empty finite set.

3. a is non-alegbraic ⇐⇒ C \ spec(a) is at most countable.

Let C(t) be the field of rational functions in t.

Lemma. Let λ1, . . . , λn ∈ C be distinct. If
∑ ci

t−λi = 0 in C(t), then all of the ci are 0.

Proof of lemma. Clearing denominators, we get that f(t)∏
(t−λi) = 0 for some f(t) ∈ C[t], hence

f(t) = 0. But for any i, the fact that f(λi) = 0 implies that ci = 0.

Proof of theorem. Given an a ∈ A, define

Ra = {fg ∈ C(t) | f, g are coprime, and g is non-zero on spec(a)}.

Thus, for any g1, . . . , gn ∈ C \ spec(a), we have 1
g ∈ Ra where

g(t) = (t− g1) · · · (t− gn) ∈ Ra
and any denominator has this form. Note that Ra is a subring of C(t). Now, we can define an
evaluation map ja : Ra → A by

f

g
7→ f(a) · g(a)−1 = f(a)(a− g1)−1 · · · (a− gn)−1.

Observe that if a is not algebraic, then for any f
g ∈ Ra, if ja(

f
g ) = 0, we have f(a)g(a)−1 = 0, hence

f(a) = 0, hence f = 0 because a is not algebraic. Thus, ja is injective when a is not algebraic.

Our lemma demonstrates that { 1
t−λ | λ ∈ C \ spec(a)} is a C-linearly independent subset of Ra, and

our observation above implies that {(a− λ)−1 | λ ∈ C \ spec(a)} is linearly independent (when a is
not algebraic). Because dimC(A) ≤ countable, we must have that |C \ spec(a)| ≤ countable.

We also know that if a is algebraic, then spec(a) = {roots of the minimal polynomial of a}, which
must be a finite set, and which is non-empty because C is algebraically closed.

It is impossible to have spec(a) be finite and C \ spec(a) to be at most countable at the same time,
so parts 2 and 3 follow.

Now we will prove part 1. We clearly know that a is nilpotent ⇐⇒ a is algebraic and spec(a) = {0},
but we want to drop the assumption that a is algebraic. We can do this because spec(a) = {0}
implies that spec(a) is finite, hence a is algebraic by part 2.
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Corollary. If A is nice and a ∈ A, then spec(a) is non-empty.

Proof. Obviously, a is either algebraic or not algebraic; apply the theorem.

Corollary. If A is a nice division algebra, then A = C.

Proof. Let a ∈ A \ C, so that a− λ 6= 0 for all λ ∈ C. Because A is a division algebra, this implies
that a− λ is invertible for all λ ∈ C, hence spec(a) = ∅, which is a contradiction.

Theorem (Schur lemma for nice algberas). If A is a nice algebra and M is a simple A-module,
then EndA(M) = C.

Proof. Pick a non-zero m ∈M . We have a diagram

A M EndA(M)a 7→ am

` i

f(m)←[ f

but because M is simple, ` is surjective. Again because M is simple, if f(m) = 0 then f(A ·m) = 0,
hence f = 0, so that i is injective.

The fact that A is nice then implies that EndA(M) is nice, hence EndA(M) is a nice division algebra,
hence EndA(M) = C.

Proposition. Let A be a nice algebra. Then J(A) is the unique maximal nil-ideal.

Remark. We know that if A is finite-dimensional, then J(A) is nilpotent.

Proof. If a ∈ J(A), then 1 − xa is invertible for all x ∈ A, so 1 − λa is invertible for all λ ∈ C.
Therefore, a− λ is invertible for all λ 6= 0, so we must have spec(a) ⊆ {0}. By the spectral theorem,
a is nilpotent. Thus, J(A) is a nil-ideal. But we have proved in a previous class that any nil-ideal is
contained in J(A); this implies the claim.

Theorem. Let A be a nice algebra with trivial Jacobson radical, i.e. J(A) = 0. The action map
A →

∏
M∈SA EndC(M) is an embedding of A as a pointwise dense subalgebra, i.e. for any finite

subset S ⊂ SA, any m1, . . . ,mn ∈
⊕

M∈SM , and any f ∈
⊕

M∈S EndC(M), there is some a ∈ A
such that f(mi) = ami for all i = 1, . . . , n.

Proof. Because

J(A) =
⋂

M∈SA

Ann(M) = 0,

we have that the action map j is injective. Because M is simple, A!
M = EndA(M) = C, and thus

A!!
M = EndC(M). Now the result follows from the Jacobson density theorem.

Commutative case

Theorem. Let A be a nice commutative algebra. Then J(A) = {nilpotent a ∈ A}. Given an algebra
homomorphism χ : A→ C, let Cχ be C considered as an A-module via χ. Then the natural maps

{algebra homomorphisms A→ C} SA {maximal ideals in A}χ 7→ Cχ M 7→ Ann(M)

are bijections.

Last edited
2012-12-10

Math 325 - Algebra 1 Page 75
Lecture 24



Proof. If a ∈ A is nilpotent, then Aa is a nil ideal, so that Aa ⊆ J(A). Conversely, any a ∈ J(A) is
nilpotent by our proposition.

Let M ∈ SA be a simple A-module. Since A is commutative, AM ⊂ A!
M (A obviously commutes

with itself). Because M is simple, we have A!
M = C by Schur’s lemma, so that AM = C, hence

dimC(M) = 1, hence there is some χ such that am = χ(a)m.

Next we need to show that any maximal ideal I in a commutative algebra A is the annihilator
of a simple module. Take M = A/I so that Ann(M) = I. Then I is a maximal left ideal iff M is
simple.
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Lecture 25 (2012-11-28)

Recall that A is a nice commutative algebra. Let Â be the collection of algebra homomorphisms from
A into C. We already showed that Â ∼= SA given by χ 7→ Cχ. Let Nil(A) be the collection of nilpotent

elements of A. Let ev : A→ C{Â} be the evaluation algebra homomorphism ev(a)(χ) = χ(a). We
will also denote â = ev(a).

Theorem. Let A be a nice commutative algebra. Then

1. ker(ev) = Nil(A).

2. im(ev) is pointwise dense.

3. For a ∈ A, spec(a) is the set of values of â.

Proof. We know parts 1 and 2, but not 3 yet. This holds if and only if spec(a) = {χ(a) | χ ∈ Â}.
For any λ ∈ C, λ ∈ spec(a) if and only if a − λ is not invertible, which is the case if and only if
A(a− λ) is contained in a maximal ideal (by Zorn’s lemma), which we know is the kernel of some
χ. Thus, a− λ ∈ A(a− λ) ⊆ ker(χ) if and only if 0 = χ(a− λ), if and only if λ = χ(a).

Theorem (Hilbert’s Nullstellensatz). Let A be a finitely generated commutative C-algebra. Let
I ⊆ A be an ideal; then a ∈

⋂
{maximal ideals of A containing I} if and only if an ∈ I for some

sufficiently large n.

Proof. a mod I is contained in the intersection of maximal ideals in A/I if and only if it lies in
Nil(A/I), i.e. an is eventually in I.

Corollary. Let A = C[x1, ..., xn]. Let V (I) = {c ∈ Cn | p(c) = 0 for all p ∈ I}. Then f |V (I) = 0 if
and only if fn ∈ I for some n.

Proof. f |V (I) = 0 if and only if evc(f) = 0 for all c ∈ V (I). The latter condition is equivalent to
saying that f ∈

⋂
{c|ker(evc)⊃I} ker(evc) =

⋂
{maximal ideals in A containing I}, which the theorem

shows is the case if and only if fn ∈ I for some n.

Topological Versions of These Results

Definition. Let A be a C-algebra. A norm on A is a function | · | : A→ R≥0 such that

1. |a| = 0 if and only if a = 0.

2. |λa| = |λ| · |a| for all λ ∈ C.

3. |a+ b| ≤ |a|+ |b|.

4. |ab| ≤ |a||b|.

Examples.

1. C(X) where X is a compact topological space and |f | = ‖f‖∞ = maxx∈X |f(x)|.

2. A = EndC(V ) where |a| = sup|v|=1 |av|.

A Banach algebra is an algebra A with norm | · | which is complete as a metric space.

Lemma. Let A be a Banach algebra. Fix an element a ∈ A. Then
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1. spec(a) is a closed subset of the disk of radius |a|.

2. The function f : C \ spec(a)→ A given by z 7→ (a− z)−1 is a holomorphic function.

3. |(a− z)−1| → 0 as |z| → ∞.

Proof. The idea is just to factor a out of the resolvent to get a−1(1 − a−1z)−1 = 1
a

∑
k(a
−1z)k,

which is absolutely continuous, hence convergent in the Banach algebra. Therefore, it is continuous
and one can differentiate termwise. This lemma is Homework 9, Problem 7.

Theorem (Gelfand). For any Banach algebra A and a ∈ A, spec(a) 6= ∅.

Proof. Suppose that spec(a) = ∅; then z 7→ (a− z)−1 is a holomorphic function C→ A. It is also
bounded by (3). By Liouville, this must be constant, which is a contradiction.

Remark. All of our results on nice algebras in Lecture 24 only relied on the fact that A nice implies
spec(a) 6= ∅ (in particular, so we get Schur’s Lemma). Thus all of those results also hold for Banach
algebras by Gelfand’s theorem.

Now equip Â with the topology of pointwise convergence. This is called the Gelfand representation.

Theorem. Let A be a commutative Banach algebra.

1. For all a ∈ A, â = ev(a) is a continuous function on Â and sup
χ∈Â |â(χ)| ≤ |a|.

2. Â is compact and ev : A→ C(Â) is a weak contraction.

3. ker(ev) is the set of elements that are topologically nilpotent, i.e. lim sup |an|1/n → 0.

Proof. (1) The topology of pointwise convergence is (by definition) the weakest topology such that
â is continuous for all a ∈ A. By Gelfand’s theorem, spec(a) is a nonempty compact set contained
in the disk of radius |a| and is equal to eva(Â) by the remark.

(3) The kernel of the evaluation map is exactly {a ∈ A|χ(a) = 0 for all χ ∈ Â}, which happens if
and only if spec(a) = {0}, which is equivalent to lim sup |an|1/n = max{|z|, z ∈ spec(a)} = 0 by
Homework 9, Problem 7.

(2) Let D be the unit disk in C and let DA be the unit disk in A. For every χ ∈ Â, χ maps DA to D
by part (1). Therefore χ is a weak contraction, hence continuous; and Â is a pointwise closed subset
in Maps(DA, D) = DDA , which is a compact set by Tychonoff (pointwise convergence topology is
exactly the product topology). Therefore, Â is compact and the map is a weak contraction.
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Lecture 26 (2012-11-30)

Last time, we discussed Banach algebras, and now we’ll add a new piece of structure to them.

Definition. A ∗-algebra is a Banach algebra A equipped with an anti-involution ∗, sending a to
a∗, such that (ab)∗ = b∗a∗, (a∗)∗ = a, (λa)∗ = λa∗, and |a∗| = |a| for all a, b ∈ A and λ ∈ C.

Examples.

• Let X be a compact Hausdorff space, and let A = C(X), with norm |f | = maxx∈X |f(x)|.
Then the map f 7→ f∗ defined by f∗(x) = f(x) makes A a ∗-algebra.

• Let V be a finite-dimensional hermitian vector space, and let A = End(V ), with norm

|a| = maxv∈V \{0}
|a(v)|
|v| . Then the map a 7→ a∗ (the hermitian adjoint) makes A a ∗-algebra.

Remark. Let Â = Homalg(A,C), which is a compact Hausdorff space. There is a natural evaluation

map ev : A → C(Â). If A = C(X), then Â = X, using our identification of the points of X with
maximal ideals. Specifically, the map

ev : C(X)→ C(Ĉ(X)) = C(X)

is the identity.

Theorem. Let A be a commutative ∗-algebra. Then

1. The evaluation map ev : A→ C(Â) commutes with anti-involution, i.e. for all χ ∈ Â,

ev(a)(χ) = ev(a∗)(χ).

2. im(ev) is dense in C(Â).

Proof. First, we’ll show that 1 implies 2. We use the Stone-Weierstrass theorem:

Theorem (Stone-Weierstrass). Let X be a compact Hausdorff space, and let B ⊂ C(X)
be a subalgebra that separates points, and that is stable under the involution of complex
conjugation. Then B is dense (with respect to the uniform convergence norm) in C(X).

In our setting, statement 1 implies that im(ev) is stable under conjugation, and im(ev) separates
points essentially by definition. Thus, statement 2 follows from statement 1.

Now we will prove statement 1. First, we will need the following fact: if u ∈ A is invertible, then
λ ∈ spec(u) ⇐⇒ λ−1 ∈ spec(u−1). This is clear: u− λ is invertible ⇐⇒ u−1 − λ−1 is invertible.

Recall that for a Banach algebra A, we can define exp : A→ A by

exp(a) = 1 + a+
a2

2
+ · · · ,

and the fact that |an| ≤ |a|n ensures that this is absolutely convergent. We claim that λ ∈
spec(a) =⇒ eλ ∈ spec(exp(a)). This follows from the fact that

exp(a)− eλ

a− λ
= 1 + · · ·

as a formal power series absolutely convergent in a (take the Taylor series of the holomorphic

function ez−eλ
z−λ ). Therefore if exp(a)− eλ is invertible, we can define (a− λ)−1.
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Let A be a ∗-algebra. We say that a is hermitian (respectively, skew-hermitian) if a∗ = a (respectively,
if a∗ = −a). We say that u is unitary if u∗u = uu∗ = 1. Clearly a is hermitian ⇐⇒

√
−1 a is

skew-hermitian. Let H(A) be the set of hermitian elements of A (which is a sub-R-vector space of
A), and let U(A) be the set of unitary elements (which is a subgroup of A×). It is easy to see that
u ∈ U(A) implies |u| = 1. Observe that

A = H(A)⊕
√
−1H(A),

and specifically, for a ∈ A, we have a = x+ iy where x = a+a∗

2 , y = a−a∗
2i ∈ H(A).

We claim that a ∈ H(A) ⇐⇒ exp(ita) ∈ U(A) for any t ∈ R. This holds because

(eita)∗ = 1∗ + (ita)∗ + (i2t2a2/2)∗ + · · · = e−ita,

proving the =⇒ direction, and the ⇐= direction follows from considering the derivative

a =
1

i

(
d

dt
eita
) ∣∣∣∣

t=0

.

Because |u| = 1 for any u ∈ U(A), for any λ ∈ spec(u) we have |λ| ≤ |u| = 1. But u∗ = u−1 is
also unitary, so for any λ−1 ∈ spec(u−1), we have |λ−1| ≤ |u−1| = 1. Therefore |λ| = 1, so that
spec(u) ⊆ S1 ⊂ C for any unitary u.

Now, we observe that for any a ∈ H(A), we have spec(a) ⊆ R. We can see this as follows. For any
t ∈ R, we know that eita ∈ U(A), and therefore for any µ ∈ spec(eita), we must have |µ| = 1. But
λ ∈ spec(a) implies that eitλ ∈ spec(eita), so that |eitλ| = 1, and therefore λ ∈ R.

We claim that for any χ : A→ C in Â, we have χ(a∗) = χ(a) for any a ∈ A. We write a = x+ iy
where x, y ∈ H(A), and recall that we proved last time spec(b) = {χ(b) | χ ∈ Â} (this is where we
need commutativity of A). Then χ(x) ∈ spec(x) ⊂ R, χ(y) ∈ spec(y) ⊂ R, and

χ(a) = χ(x+ iy) = χ(x) + iχ(y)

implies that
χ(a∗) = χ(x− iy) = χ(x)− iχ(y) = χ(x) + iχ(y).

Thus, we have proven statement 1 in our theorem.

Note that if a ∈ H(A), then |ev(a)| = lim sup|an|
1
n = |a| since |a2| = |a|2. For general a ∈ A, we

have using part (1) of the Theorem that |ev(a)|2 = |ev(a∗a)| = |a∗a| = |a|2. It follows that ev is an
isometry.

Example. Let G be a locally compact group, and
∫

be a left invariant integral. We can consider
L1(G), which is the closure of the space of continuous functions with compact support. We claim
that L1(G) together with the convolution product

(f1 ? f2)(g) =

∫
f1(h)f2(h−1g) dh

(we can’t use ∗ for convolution, it’d be too confusing) and the anti-involution f∗(g) = f(g−1) makes
L1(G) into a ∗-algebra.

Suppose that G is abelian. Then L1(G) is commutative under ?, so all of our previous work applies

(sort of). We can consider the evaluation map ev : L1(G) → C(L̂1(G)). We first suggest that
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L̂1(G) = Ĝ. Here Ĝ denotes the Pontryagin dual of G, i.e. the continuous group homomorphisms
G → S1. We can see that there may be an issue because the Gelfand representations we have
considered are always compact7, while Ĝ may only be locally compact in general. The issue arises
because L1(G) is not quite a [unital] algebra, since it need not have a unit (the unit under convolution
is not the function 1, but rather the Dirac delta, which is not in L1 unless G is discrete, that is,
unless Ĝ is compact). We fix this by formally adjoining a unit (even if there was one already in it)
by defining

L1(G)∼ = C1⊕ L1(G)

such that L1(G) is an ideal in L1(G)∼ and |c⊕ a| = |c|+ |a|. This makes L1(G)∼ a unital Banach
∗-algebra.

Proposition. The Fourier transform defines a group homeomorphism

Ĝ ∪ {∞} ∼= L̂1(G)∼

where the LHS is a one-point compactification of Ĝ.

Proof. Let ζ : L1(G)∼ → C be an algebra homomorphism. We proved that ev is an isometry, so
ζ restricted to L1(G) is a bounded linear functional with ‖ζ‖1 = 1. The dual of L1(G) is L∞(G)
so ζ may be considered as an almost everywhere bounded function on G. Pick f ∈ L1(G) such

that ζ(f) =
∫
G ζ(h)f(h)dh 6= 0. Then define χ(g) =

∫
ζ(gh)f(h)dh∫
ζ(h)f(h)dh

. The fact that ζ is an algebra

homomorphism and has norm 1 implies that χ : G → S1 is a unitary character of G, i.e. χ ∈ Ĝ.
Then one sees that ζ as a functional corresponds to the Fourier transform of χ. See Bourbaki, Vol
IX, Théories spectrales, Ch 2, §1, Proposition 1.1 for details.

Theorem (N.W.). If f ∈ C(S1) and f nowhere vanishes, then Fourier(f) is absolutely convergent
implies that Fourier( 1

f ) is absolutely convergent.

Proof. We let G = Z, so that Ĝ = S1. Consider `1(Z), and the evaluation map ev : `1(Z)→ C(S1)
sending ϕ to Fourier(ϕ) ∈ C(S1). There exists some ϕ ∈ `1(Z) such that Fourier(ϕ) = ev(ϕ) = f ,
and

0 /∈ {values of f} = {values of ev(ϕ)}.

Therefore 0 /∈ spec(ϕ), and therefore there exists a ϕ−1 ∈ `1(Z) (inverse with respect to convolution).
We have Fourier(ϕ−1) = 1

f .

7In fact one can define Â for a commutative Banach algebra A without unit, in which case Â is not guaranteed to
be compact.
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Lecture 27 (2012-12-03)

Today, we’ll start discussing Lie theory.

First, I want to raise some philosophical questions: in what sense can C× be thought of as a
complexification of S1? How can we complexify the symmetric group Sn?

We have the map exp : C→ C×, defined by a 7→ ea, and the line iR maps onto S1. We can think
of C as a complexification of the line iR, and so the exponential map tells us that C× should be
thought of as a complexification of S1.

More generally, if we have a ∗-algebra and the exponential map exp : A → A×, then the skew-
hermitian operators iH(A) are mapped to the unitary operators U(A), and because A = iH(A)⊕
H(A) is a complexification of iH(A), we ought to think of A× as a complexification of U(A).

For example, if A = Mn(C) with ∗ being the hermitian adjoint, then A× = GLn(C), U(A) = Un,
and GLn(C) is to be thought of as a complexification of Un.

Definition. A finite-dimensional representation ρ : GLn(C) → GLN (C) is called holomorphic if
g 7→ ρij(g) is a holomorphic function on GLn(C) ⊂ Mn(C) for all 1 ≤ i, j ≤ N .

Proposition. Let ρ : GLn(C)→ GL(V ) be a holomorphic representation, and suppose we have a
subspace W ⊂ V that is Un-stable. Then in fact W is GLn(C)-stable.

Corollary (The ‘‘unitary trick’’). Any finite-dimensional holomorphic representation of GLn(C)
is completely reducible.

Proof of corollary. Let V be a holomorphic representation of GLn(C). Because Un is compact,
we know that any unitary representation is completely reducible, so considering V now as a Un-
representation, we have a decomposition V = V1⊕· · ·⊕Vk into Un-irreps, and the proposition implies
these are also GLn(C)-irreps (enlarging the group can’t make reducible something irreducible).

Lemma. Let f : Cr → C be a holomorphic function such that f |Rn = 0. Then f = 0.

Proof of lemma. This is easy - use the Cauchy-Riemann equations and induction on r.

Proof of proposition. Suppose that W ⊂ V is a Un-stable subspace that is not GLn(C)-stable. Thus,
we can find g ∈ GLn(C) and v ∈ W such that gv /∈ W . Choose φ ∈ V ∗ such that φ|W = 0 and
φ(gv) 6= 0.

Let f : Mn(C)→ C be the map defined by a 7→ φ(ρ(exp(ia))v). For any a ∈ H(Mn(C)), we have
exp(ia) ∈ Un, hence ρ(exp(ia))v ∈W , and therefore f(a) = 0. By the lemma, we must have that
f = 0, but this is a contradiction; for example, there is an x ∈ Mn(C) such that g = eix, and then
we must have f(x) 6= 0.

This was a demonstration of a Lie theory argument. Now let’s move to a more general setting.

Definition. Let G ⊂ GLn(R) be a closed subgroup, and denote the unit element by e. The Lie
algebra of G is defined to be Lie(G) = {a ∈ Mn(R) | eta ∈ G for all t ∈ R}.

Lemma.

1. Lie(G) is a vector subspace of Mn(R).

2. G is a submanifold in Mn(R) with tangent space Lie(G).
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e

G

Lie(G)
Mn(R)

Proof of 1. For any a ∈ Lie(G), we know that za ∈ Lie(G) for any z ∈ R (this is clear from the
definition). For any a, b ∈ Lie(G), we can consider the map f : R→ G defined by t 7→ etaetb (we
have etaetb ∈ G because a, b ∈ Lie(G), so their product is as well). Clearly,

df

dt

∣∣∣∣
t=0

= a+ b.

We claim that df
dt |t=0 ∈ Lie(G). We can deduce this from the fact that

lim
n→∞

(e
1
n
ae

1
n
b)n = ea+b.

Indeed, it is more generally true that for any a, b ∈ Mn(R) with |a|, |b| � 1, we have

log(eaeb) = a+ b+
1

2
(ab− ba) + o(|a|2 + |b|2).

[This is similar to the calculation of ∂2

∂t∂s (etaesbe−tae−sb) on a previous homework.] We then conclude that

eta+tb+ t2

2
(ab−ba)+o(t2(|a|2+|b|2)) = etaetb ∈ G.

This doesn’t seem to be enough to prove?

Since this is not really a course on Lie theory, proof of 2 is omitted.

Examples.

• Lie(GLn(R)) = Mn(R)

• Lie(S1) = iR

• Lie(Un) = iH(Mn(C))

• Lie(SLn(C)) = {a ∈ Mn(C) | tr(a) = 0} (you showed on a homework that ettr(a) = det(eta))

• Let G = On(R) = {g ∈ Mn(R) | (gT )−1 = g}. Then

Lie(On) = {a | ((eta)T )−1 = eta for all t}

= {a | e−taT = eta for all t}
= {a | −aT = a}
= {skew-symmetric matrices}.

Remark. Let N be the orthogonal complement of Lie(G) in Mn(R).

exp : Mn(R)︸ ︷︷ ︸
Lie(G)⊕N

−→ GLn(R).

Then exp restricts to a homeomorphism of a neighborhood of the origin in Lie(G) to a neighborhood
of the identity in G.
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Let ρ : G→ GL(V ) be a continuous representation, where G ⊂ GLn(C) is a closed subgroup. For
any a ∈ Lie(G), we can form the composition

R G GL(V )

t eta ρ(eta)

exp ρ

which is a continuous map from R to GL(V ), and by a previous homework assignment, we know
that this implies there is a unique dρ(a) ∈ End(V ) such that ρ(eta) = et·dρ(a). We get a map
dρ : Lie(G)→ End(V ).

Proposition.

1. Any continuous representation G→ GL(V ) is a C∞ map.

2. dρ(ab− ba) = dρ(a)dρ(b)− dρ(b)dρ(a) for all a, b ∈ Lie(G).

3. If G is connected and there is no subspace W ⊂ V , W 6= 0, V such that dρ(a)(W ) ⊆W for
all a ∈ Lie(G), then ρ is an irrep of G.
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Lecture 28 (2012-12-05)

Let’s review what we did last time.

Given a closed subgroup G ⊂ GLn(R), we consider a continuous representation ρ : G → GL(V ).
For any a ∈ Lie(G), we define dρ(a) by

ρ(eta) = etdρ(a).

We have a diagram

Lie(G) End(V )

G GL(V )

dρ

exp exp

ρ

which commutes essentially by the definition of dρ.

Recall that the commutator of two elements of a ring a, b ∈ R is [a, b] := ab− ba.

Proposition. Let ρ : G→ GL(V ) be a continuous representation.

1. ρ is a C∞ map.

2. dρ is a linear map.

3. If a, b ∈ Lie(G), then [a, b] ∈ Lie(G) where the commutator is defined just by consdiering a
and b as matrices, and moreover, dρ respects the commutator, i.e.

dρ([a, b]) = [dρ(a), dρ(b)].

4. Suppose G is connected. If W ⊆ V is a vector subspace stable under dρ(a) for all a ∈ Lie(G),
then W is also stable under ρ(g) for all g ∈ G.

5. If ρ′ : G → GL(V ) is another continuous representation on the same vector space V , if
dρ = dρ′, then ρ = ρ′.

Proof of 1. We know that exp is smooth, so that a neighborhood of 0 in Lie(G) is mapped diffeo-
morphically to a neighborhood of e ∈ G. Assuming dρ is linear, it is smooth, so ρ is smooth near
identity. For any g0 ∈ G, the map g 7→ ρ(g0 · g) = ρ(g0)ρ(g) is smooth, so we can translate to get ρ
smooth everywhere.

Proof of 2. First, we will need the following lemma:

Lemma. Let f : R→ G is a smooth path with f(0) = e, then

1. df
dt

∣∣
t=0
∈ Lie(G)

2. If df
dt

∣∣
t=0

= 0, then d2f
dt2

∣∣
t=0
∈ Lie(G).

For any A,B ∈ Mn(R) and t ∈ R, we have

etAetB = et(A+B)+ t2

2
[A,B]+o(t2).
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Let a, b ∈ Lie(G). Then

ρ(eta)ρ(etb) = ρ(etaetb) = ρ(et(a+b)+ t2

2
[a,b]+o(t2))

because ρ is a representation, but we also have that

ρ(eta)ρ(etb) = etdρ(a)etdρ(b) = et(dρ(a)+dρ(b))+ t2

2
[dρ(a),dρ(b)]+o(t2).

Both sides must be the identity when t = 0, so we can apply the lemma to get

d(right side)

dt

∣∣∣∣
t=0

=
chain
rule

dρ(a+ b).

and
d(left side)

dt

∣∣∣∣
t=0

= dρ(a) + dρ(b)

so dρ is linear. To avoid circular reasoning, we need to justify use of chain rule (since we don’t want
to assume part 1); see next lecture.

Proof of 3. Consider the map f : R → G defined by t 7→ etaetbe−t(a+b). As we showed last time,
for any a, b ∈ Lie(G), we also have a+ b ∈ Lie(G). By part 2 (?), we have that df

dt

∣∣
t=0

= 0, so the

second part of the lemma implies that d2f
dt2

∣∣
t=0

= [a, b] ∈ Lie(G).

Proof of 4. We will need the following lemma:

Lemma. Let G be a connected topological group, and let U be an open neighborhood of e ∈ G.
Then the subgroup generated by U is G.

Proof of lemma. We improve our open neighborhood a bit by defining U = U ∩ U−1, where
U−1 = {g−1 | g ∈ U}. Because U−1 is open and contains e, U is an open neighborhood of e. Thus, it
suffices to show that the subgroup generated by U , which we will write G′ =

⋃
k≥1 Uk, is equal to G.

We will show that G′ is open, as a union of open sets, and G′ is closed, because for any g ∈ G,

Now, recall that we showed that the exponential map exp : Lie(G) → G is a local isomorphism.
Then the image of exp contains an open neighborhood U of e ∈ G. Let W ⊂ V be stable under dρ(a)
for all a ∈ Lie(G). Then W is stable under edρ(a) = ρ(ea) because edρ(a) is just a sum of powers of
dρ(a), and therefore W is stable under ρ(g) for any g ∈ im(exp). Thus, W is stable under ρ(g) for
any g ∈ U , hence stable under ρ(g) for any g ∈ Uk, hence stable under ρ(g) for any g ∈ G.

Proof of 5. By assumption, dρ = dρ′. Exponentiate both sides. Then the same argument as in proof
of 4 shows ρ = ρ′ everywhere.

Let G ⊂ GL2(C). There is a natural action G

œ Cm[u, v] for each m = 0, 1, . . .

Theorem. For each m ≥ 0, SL2(C) has a unique (up to isomorphism) holomorphic irrep Lm of
dim(Lm) = m+ 1 and Lm = Cm[u, v].

Proof. First, we need to compute Lie(SL2(C)). As we showed last time,

Lie(SL2(C)) = {A ∈ M2(C) | tr(A) = 0} =

{(
a b
c −a

) ∣∣∣∣ a, b, c ∈ C
}
.
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Thus, Lie(SL2(C)) has as a basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

As you’ve shown on a homework,

[e, f ] = h, [h, e] = 2e, [h, f ] = 2f.

Let ρ : SL2(C)→ GL(V ) be a holomorphic representation. Consider the map dρ : Lie(G)→ End(V ),
and let E = dρ(e), H = dρ(h), F = dρ(f). Then E, H, F satisfy the same commutation relations.

This gives V the structure of a U-module, where U is the algebra defined on the same homework
assignment.

We claim that if V is irreducible as an SL2(C)-representation, then V is simple as a U-module.
Suppose otherwise; then let W ⊂ V be a non-trivial U-submodule. Then part 4 of our proposition
implies that, since W is stable under dρ(a) for any a ∈ Lie(G), we must have that W is a
subrepresentation of V , but this is a contradiction with the assumption that V is irreducible.

As you showed on your homework, this means that V ∼= Cm[u, v] as a U-module for some m.

Thus, we get some representation ρ : SL2(C) → GL(Cm[u, v]), which we can compare with the
natural representation. But by construction, their differentials are equal since the U-action on
Cm[u, v] is the natural one. Because SL2(C) is connected, we are done by part 5 of the proposition.

Next time, we will look at SU2(C), SO3(R).

Last edited
2012-12-10

Math 325 - Algebra 1 Page 87
Lecture 28



Lecture 29 (2012-12-07)

Let’s finish up the computation of d(left side)
dt from last time, where

left side = ρ(et(a+b)+ t2

2
[a,b]+o(t2)) = ρ(et·f(t)) = et·dρ(f(t)),

letting f(t) = a+ b+ t
2 [a, b] + o(t2)

t . Note that f(t)→ a+ b as t→ 0.

We have
et dρ(f(t)) − 1

t
=
et dρ(f(t)) − 1

t · dρ(f(t))
· tdρ(f(t))

t
.

Because ρ is continuous, we also have that dρ is continuous, hence the first factor et dρ(f(t))−1
t·dρ(f(t)) goes

to 1 as t→ 0, and hence the limit of the entire expression as t→ 0 is dρ(a+ b).

Now we will consider the action of SL2(C)

œ Cm[u, v], and the action of SU2 obtained by the
inclusion SU2 ↪→ SL2(C).

Theorem. For each m ≥ 0, restricting the SL2(C)-action on Cm[u, v] to SU2 yields an irrep of
SU2, and these are all irreps of SU2 up to isomorphism.

Proof. Because SU2 = SL2(C) ∩U2, we have

Lie(SU2) = {A ∈ M2(C) | A∗ = −A, tr(A) = 0} =

{(
ia b+ ic

−b+ ic −ia

) ∣∣∣∣ a, b, c ∈ R
}
.

We can decompose M2(C) as a direct sum of the hermitian and skew-hermitian matrices:

M2(C) = H(M2(C))⊕ iH(M2(C)),

and therefore

{A ∈ M2(C) | tr(A) = 0}︸ ︷︷ ︸
Lie(SL2(C))

= {A ∈ H(M2(C)) | tr(A) = 0} ⊕ i{A ∈ H(M2(C)) | tr(A) = 0}︸ ︷︷ ︸
Lie(SU2)

.

We can express this as

Lie(SL2(C)) = iLie(SU2)⊕ Lie(SU2) = C⊗R Lie(SU2),

so that Lie(SU2) is like the ‘‘real part’’ of the vector space Lie(SL2(C)), and Lie(SL2(C)) is like the
complexification of Lie(SU2).

Let ρ : SU2 → GL(V ) be a irrep. The differential map is dρ : Lie(SU2)→ EndC(V ). Because ρ is a
irrep, there is no proper subspace W ⊂ V that is stable under im(dρ). Because Lie(SU2) is a real
vector space and EndC(V ) is a complex vector space, we can always extend an R-linear map from
Lie(SU2) to EndC(V ) to a C-linear map from the complexification of Lie(SU2) to the same vector
space EndC(V ),

(C⊗R dρ) : C⊗R Lie(SU2)︸ ︷︷ ︸
Lie(SL2(C))

→ EndC(V ).

Because Lie(SL2(C)) = 〈e, h, f〉, we see that V acquires the structure of a simple U-module.

Now let’s discuss SO(R3). There is a natural action SO(R3)

œ Cn[x, y, z].
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Theorem. For each positive odd integer 2n+ 1, n = 0, 1, . . ., there is a unique irrep of SO(R3) of
dimension 2n+ 1 (up to isomorphism). Specifically, this irrep is Harmm(C3, SO(R3)). These are
all of the irreps of SO(R3).

Proof. Recall from the first homework assignment that there is a double cover map π : SU2 →
SO(R3), which you obtained by thinking of SU2 as U(H). The kernel of π is just {±1}.

Given an irrep φ : SO(R3)→ GL(V ), the composition φ ◦ π is an irrep of SU2 since φ is surjective,
and the map φ 7→ φ ◦ π clearly gives a bijection

ŜO(R3)
π∗∼= {ρ ∈ ŜU2 | ρ(−1) = 1}

between irreps φ of SO(R3) and irreps ρ of SU2 that annihilate ker(π).

Any irrep of SU2 is some Cm[u, v]. Note that −id maps uavb to (−1)a+buavb, so a representation
descends to SO(R3) if and only ifm = a+b is even, i.e.m = 2n for somem. Note that dim(Cm[u, v]) =
dim(C2n[u, v]) = 2n+ 1.

Now we need to identify this representation with the representation Harmm(C3,SO(R3)). Recall
that by a homework problem,

Cn[x, y, z] ∼= Hn ⊕ r2Hn−2 ⊕ · · ·

where r2 = x2 +y2 +z2, and also that dim(Hk) = 2k+1. Note that Hk is an SO(R3)-stable subspace
of Ck[x, y, z].

There are two possibilities:

1. Hn is an irrep of dimension 2n+ 1 (which is what we want), or

2. it isn’t.

If it isn’t, then each irreducible direct summand of Hn has dimension < 2n+ 1, and observing the
decomposition of Cn[x, y, z] we wrote above, we see that statement 2 is equivalent to

2′. Each irreducible direct summand of Cn[x, y, z] has dimension < 2n+ 1.

Now, it will suffice to show that 2′ is impossible. Indeed, we claim that the (2n+ 1)-dimensional
irrep of SO(R3) does occur in Cn[x, y, z].

Consider the map R→ SU2 defined by t 7→
(
eit 0
0 e−it.

)
. Let’s check what it does to monomials:(

eit 0
0 e−it

)
: uavb 7→ eiate−ibtuavb = ei(a−b)tuavb.

Thus, the eigenvalues of this matrix on C2n[u, v] are {eikt | −2n ≤ k ≤ 2n}, and in particular, the
maximum possible k is 2n.

Therefore, if we can show that π
(
eit 0
0 e−it.

)
does have e2nit as an eigenvalue when acting on Cn[x, y, z],

we will be done, because no lower dimensional irrep could have produced it.

On the homework, you classified continuous homomorphisms R→ SOn. Then we know that the
composition ρ : R→ SU2

π−→ SO(R3) must map t to eAt for some A, and moreover, we now know
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that we must have A ∈ Lie(SO(R3)), or in other words, A ∈M3(R) satisfies At = −A. Therefore,
there exists an orthogonal basis x, y, z in which

A =

 0 a 0
−a 0 0
0 0 0

 .

Note that

{t ∈ R | ρ(t) = 1} =

{
t ∈ R

∣∣∣∣(eit 0
0 eit

)
= ±1

}
= {t ∈ πZ}

But on the other hand,

{t ∈ R | ρ(t) = 1} = {t | eAt = 1}
= {t | e±iat = 1}
= {at ∈ 2πZ}

Therefore, a = 2, and the matrix eAt has eigenvalues e2it, e−2it, and 1. Acting on Cn[x, y, z], we can
see that it has as e2nit as an eigenvalue, because (for example) xn is mapped to (e2itx)n = e2nitxn.
Thus, we are done.
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