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Lecture 1 (2012-10-01)

Today I’ll try to present a general idea of algebraic topology.

Definition. A category C is a set C (though not always really a set) of objects and a set

Mor(C) = {f : A→ B | A,B ∈ C}

of morphisms between the objects of C. We can always compose morphisms (whose domains and
codomains are appropriately related), this composition is always associative, and for all objects
A ∈ C, there is a morphism idA : A→ A that acts as the identity for composition.

Examples. The following are some common examples of categories.

• C = {topological spaces}, and Mor(C) = {continuous maps}

• C = {topological spaces}, and Mor(C) = {homeomorphisms}

• C = {vector spaces over a field K}, and Mor(C) = {K-linear maps}

• C = {abelian groups}, and Mor(C) = {homomorphisms}

Definition. A (covariant) functor F : C → D is a mapping that takes objects A ∈ C to objects
F (A) ∈ D, and morphisms (f : A→ B) between objects of C to morphisms (F (f) : F (A)→ F (B))
between the corresponding objects of D.

We’ll often refer to F (f) as f∗ when the functor F is understood.

We can also define a contravariant functor to be a functor that reverses the direction of morphisms,
so that F (f) : F (B)→ F (A). In this situation, the shorthand for F (f) will be f∗.

In either case, it must satisfy F (idA) = idF (A). It also must satisfy functoriality; that is, we must
have F (f ◦ g) = F (f) ◦ F (g), or in shorthand (f ◦ g)∗ = f∗ ◦ g∗. This goes in the other order for
contravariant functors.

Examples. The following are some common examples of functors.

• C = {finite sets} with Mor(C) = {set maps},D = {R-vector spaces} with Mor(D) = {linear maps},
and F : C → D defined on objects by

S 7→ free R-vector space on S

and for a morphism f : S → T , F (f) is the linear map uniquely determined by sending the
basis element s to the basis element f(s).

• C = {R-vector spaces} with Mor(C) = {linear maps}, and F : C → C defined on objects by
V 7→ V ∗, and on morphisms by (A : V →W ) 7→ (A∗ : W ∗ → V ∗).

Broadly speaking,

algebraic topology ' construction of functors {spaces} → {algebraic objects}.

The functors we’ll look at in this class are Hi, H
i, π1, and πn.

Here are some demonstrations of the power of functors. Let’s suppose we know there exists a
functor Fi : {spaces} → {abelian groups} such that Fi(Dn) = 0 for any n, Fi(Sn) = 0 for n 6= i, and
Fi(Si) 6= 0. We don’t have to know what else it does.
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Example. From this assumption alone, we can prove that Sn ∼= Sm ⇐⇒ n = m, and as a corollary,
prove ‘‘invariance of dimension’’, i.e. Rn ∼= Rm ⇐⇒ n = m.

Proof. Suppose h : Sn → Sm is a homeomorphism, with inverse g. Then applying the functor Fn,

g ◦ h = idSn =⇒ g∗ ◦ h∗ = idFn(Sn),

h ◦ g = idSm =⇒ h∗ ◦ g∗ = idFn(Sm).

This implies that h∗ : Fn(Sn)→ Fn(Sm) is a bijection, and hence an isomorphism. But Fn(Sn) 6= 0
and Fn(Sm) = 0 unless n = m.

Example (Brouwer Fixed Point Theorem). Any continuous f : Dn → Dn has a fixed point (n ≥ 2).

Proof. Suppose there are no fixed points. Then we can define r : Dn → ∂Dn = Sn−1 by drawing a
line from f(v) to v (this is possible only because we are assuming they are different) and extending
it until it hits the boundary of Dn, and setting that to be r(v).

v

f(v)

r(v)

You can prove that this is continuous on your own. Note that for any v ∈ Sn−1, we will have that
r(v) = v. Thus, letting i : Sn−1 → Dn be the obvious inclusion map, we have that r ◦ i = idSn−1 (we
say that ‘‘r is a retraction of Dn onto Sn−1’’). Because r ◦ i = idSn−1 , we have that

Fn−1(r) ◦ Fn−1(i) = idFn−1(Sn−1)

so that Fn−1(r) must be surjective. But Fn−1(r) : Fn−1(Dn) → Fn−1(Sn−1) can’t be surjective
because Fn−1(Dn) = 0 and Fn−1(Sn−1) 6= 0. This is a contradiction.

A final comment: a good method for turning invariants for spaces into invariants for maps is to
associate to a map f : X → Y its graph Γf ⊂ X × Y .
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Lecture 2 (2012-10-03)

There are some corrections for the homework: on problem 2a, it should read

H0(C) = H̃0(C)⊕ Z

and on problem 3, you should show that the following diagram commutes:

∆n

[v0···vn]
��

// ∆m τ // Y

X
f

66

Simplices and ∆-complexes

Definition. The standard (ordered) n-simplex [v0 · · · vn] is the convex hull of the set {e1, . . . , en+1}
where ei = (0, . . . , 1, . . . , 0) ∈ Rn+1. For example, when n = 2,

e0
e1

e2

Equivalently, it is the set {∑n
i=1 aiei ∈ Rn+1 | ai ≥ 0,

∑n
i=1 ai = 1

}
.

We will often want to specify using coordinates. Let v0 = 0, and vi = ei for i = 1, . . . , n+ 1. Then

∆n = convex hull ({v1 − v0, . . . , vn+1 − v0}).

For example,
∆0 = v0

∆1 = v0 v1

∆2 =

v0 v1

v2

∆3 =

v0

v1

v2

v3

Note that an ordered n-simplex has n+ 1 ‘‘face maps’’; for each i = 0, . . . , n,

[v0 · · · v̂i · · · vn] = an ordered (n− 1)-simplex (‘‘subsimplex of [v0 · · · vn]’’).

For example, for n = 2, we get canonical linear maps
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[v0v1v2]

[v1v2]

[v0v2]

[v0v1]

[v2]

[v1]

[v2]

[v0]

[v1]

[v0]

Definition. Let X be a topological space. A ∆-complex structure on X is a decomposition of X
into simplices. Specifically, it is a finite collection S = {∆i} of simplices with continuous maps that
are injective on their interiors, that also satisfies

•
⋃
i σi(∆i) = X,

• For all x ∈ X, there is a unique i such that x ∈ Int(σi(∆i)).

• If σ : ∆→ X is an element of S, then all subsimplices τ of σ are also elements of S. In other
words, S is closed under taking faces.

Example. The torus T2 can be given a ∆-complex structure as follows:

v v

v v

a

a

b b
c

Example. The Klein bottle can be given a ∆-complex structure as follows:

v v

v v

a

a

b b
c

Example. Let X be a topological space, and let {Ui} be an open cover of X (assume indexed by
an ordered set, induces order for simplices). The nerve of the cover is the ∆-complex specified by

• A vertex vi for each Ui

• If Ui ∩ Uj 6= ∅, the 1-simplex [vivj ]
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vi vj

UjUi

• •

• If Ui ∩ Uj ∩ Uk 6= ∅, the 2-simplex [vivjvk]

vi vj

vk

UjUi

Uk

• •

•

Simplicial Homology

We want, for any ∆-complex X, and i ≥ 0, an abelian group Hi(X). We want this to be

1. Computable

2. Topologically invariant: if X, Y are ∆-complexes and X ∼= Y , then Hi(X) ∼= Hi(Y ).

3. Non-triviality: Hn(Sn) 6= 0.

Step 1 (topology): We input a ∆-complex structure on X. We output, for each n ≥ 0,

Cn(X) = free abelian group on {(ordered) n-simplices in X}.

Example. Let X be a 2-simplex,

v0 v1

v2

Then we have

• C0(X) = Z3 = 〈[v0], [v1], [v2]〉

• C1(X) = Z3 = 〈[v0v1], [v0v2], [v1v2]〉

• C2(X) = Z = 〈[v0v1v2]〉
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• Cn(X) = 0 for n ≥ 3

Example. Let X be the torus,

v v

v v

a

a

b b
c

T1

T2

Then we have

• C0(X) = Z = 〈[v]〉

• C1(X) = Z3 = 〈a, b, c〉

• C2(X) = Z2 = 〈T1, T2〉

• Cn(X) = 0 for n ≥ 3

Note that we are abusing notation and identifying simplices with their maps to the space.

Step 2 (algebra): Because Cn(X) is the free abelian group on the simplices, a τ ∈ Cn(X) is uniquely
expressed as

τ =
r∑
i=1

aiσi, ai ∈ Z.

For all n ≥ 1, we define homomorphisms δn : Cn(X) → Cn−1(X) by specifying them on the
generators of Cn(X): for any n-simplex σ : ∆n → X, we let

δnσ =

n∑
i=0

(−1)iσ|[v0···v̂i···vn].

The key property of these homomorphisms is that δn ◦ δn−1 = 0. Note that we also needed the
ordering to define this.

We will compute some homology next class.
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Lecture 3 (2012-10-05)

Let X be a ∆-complex. This is essentially a simplicial complex with extra structure, namely, an
ordering of the vertices compatible with σ-maps.

For each n,

∆n(X) = Cn(X) = free abelian group on the set of ‘‘allowable’’ maps ∆n → X.

For each n-simplex in X (i.e. ∆n eα−→ X), there are several ∆-maps

∆n eα // X

∆n−1

OO

eβ

<< (these are the faces of eα)

Given eα(v0, . . . , vn), we define

∂eα =
n∑
i=0

(−1)ieα|(v0,...,v̂i,...,vn).

The key property of this construction is that ∂ ◦ ∂ = 0.

Now we do some pure algebra.

Definition. A chain complex is a collection of abelian groups Ci and homomorphisms ∂i : Ci → Ci−1

such that ∂i−1 ◦ ∂i = 0. We write this as

· · · // Cn+2
∂n+2 // Cn+1

∂n+1 // Cn
∂n // Cn−1

∂n−1 // · · ·

We say that α ∈ Cn is a cycle if ∂n(α) = 0 and β ∈ Cn is a boundary if there is some γ ∈ Cn+1

such that ∂n+1(γ) = β. In other words,

n-cycles = ker(∂n), n-boundaries = im(∂n+1).

All boundaries are cycles, but not all cycles are boundaries. Letting Zn be the subgroup of cycles in
Cn, and Bn the subgroup of boundaries in Cn, we have Bn ⊆ Zn, and we define

Hn = Zn/Bn.

Applying this to topology, we define

Hn(X) = nth homology group of (∆n(X), ∂n).

Example. Consider the triangle

a b

c

x

yz

Last edited
2012-12-09

Math 317 - Algebraic Topology Page 7
Lecture 3



We have that
∆0 = 〈a, b, c〉 ∼= Z3, ∆1 = 〈x, y, z〉 ∼= Z3.

The map ∂1 sends
x 7−→ b− a, y 7−→ c− b, z 7−→ c− a

or expressed as a matrix,

∂1 =

−1 0 1
1 −1 0
0 1 1

 .

Thus,
ker(∂1) = 〈x+ y − z〉 ∼= Z.

Of course, we have ker(∂0) = Z3, and im(∂1) is the set of things which sum to zero, so H0
∼= Z.

Example. Consider the 2-simplex

a b

c

x

yz

T

We have that
∆0 = 〈a, b, c〉 ∼= Z3, ∆1 = 〈x, y, z〉 ∼= Z3, ∆2 = 〈T 〉.

The map ∂1 is the same as before, and ∂2(T ) = y − z + x. In this case we get

H0
∼= Z, H1

∼= 0, H2
∼= 0.

Example. Consider the torus

v v

v v

y

y

x x
z

A

B

We have that
∆0 = 〈v〉, ∆1 = 〈x, y, z〉, ∆2 = 〈A,B〉

with ∂0 = 0, ∂1 = 0, and
∂2(A) = y + z − x, ∂2(B) = y − x+ z

which implies that ker(∂2) = 〈A−B〉 and im(∂2) = 〈y + z − x〉. Thus,

H1 = 〈x, y, z〉/〈y + z − x〉 ∼= Z2, H2 = 〈A,B〉/〈A−B〉 ∼= Z.
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Lecture 4 (2012-10-08)

Homotopy was invented to study the topological invariance of homology groups.

Proposition. Let X be a ∆-complex with path components X1, . . . , Xr. Then H0(X) ∼= Zr and
furthermore, for all i ≥ 0,

Hi(X) =

d⊕
j=1

Hi(Xj).

Proof. We’ll show that X connected implies that H0(X) ∼= Z. Then we just have to prove the
general part.

Note that
H0(X) = Z0(X)/B0(X) = C0(X)/ im(∂1).

Pick a vertex v0, and let u be any other vertex.

v0 u

We can see that [u] = [v0] ∈ H0(X) because X is path-connected, so there exists a path from v0 to
u, which we can homotope to a path of edges [v0v1] ∪ [v1v2] ∪ · · · [vnu].

v0 u v0

v1 · · · vn

u

Let
σ = [v0v1] + [v1v2] + · · ·+ [vnu],

so that
∂σ = (v1 − v0) + (v2 − v1) + · · ·+ (u− vn).

Thus u− v0 = ∂σ ∈ im(∂1), and thus [u] = [v0] ∈ H0(X).

For any w =
∑
aivi, we therefore have that [w] =

∑
ai[vi] = (

∑
ai) [v0]. Thus, [v0] generates

H0(X).

To prove that [v0] has infinite order in H0(X), we’ll use contradiction. Suppose it had order n;
then n[v0] = 0 ∈ H0(X), so that there is some σ ∈ C1(X) such that ∂σ = n[v0]. Now we define a
homomorphism ψ : C0(X)→ Z by sending every generator of C0(X) to 1. Thus, for any 1-simplex
[uv],

ψ(∂[uv]) = ψ(v − u) = ψ(v)− ψ(u) = 0

but n = nψ(v0) = ψ(nv0) = ψ(∂σ) = 0, which is a contradiction.
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Thus, we’ve shown that H0(X) ∼= Z for X connected. Now we want to prove that

Hi(X) =
d⊕
j=1

Hi(Xj).

Let

φn :

d⊕
i=1

Cn(Xi)→ Cn(X)

be defined by sending σ to σ (since Xi ⊆ X, a chain on Xi is literally a chain on X) and we can
get an inverse map by noting that, for any simplex σ, its image σ(∆n) is connected, and therefore
can only lie in one connected component. Thus φn is an isomorphism.

Note that ‘‘φ commutes with ∂’’, i.e.

φ ◦ ∂+
n = ∂n ◦ φ

where ∂+
n = ⊕∂Xin (this fact is clear).

Now we will need a homological algebra fact. For any chain complexes C = {Cn, ∂n} and C′ =
{C ′n, ∂′n}, a chain map f : C → C′ is a collection of maps fn : Cn → C ′n such that fn ◦ ∂n = ∂′n ◦ fn,
or as a diagram,

Cn
∂n //

fn

��

Cn−1

fn−1

��
C ′n ∂′n

// C ′n−1

The homological algebra fact is that any chain map f : C → C′ functorially induces a homomorphism
f∗ : Hn(C)→ Hn(C′). Here is a proof.

Given a σ ∈ Zn(C), or equivalently ∂nσ = 0, we get that

∂n(fn ◦ σ) = fn(∂nσ) = fn(0) = 0

so fn(σ) ∈ Zn(C′).

We map Zn(C) to Hn(C) by sending σ to [σ], and likewise for C′. To show f induces a compatible
map on homology (the dashed arrow)

Zn(C) //

��

Zn(C′)

��
Hn(C) = Zn(C)/Bn(C) // Hn(C′) = Zn(C′)/Bn(C′)

note that for any τ ∈ Bn(C), we have ∂′(f(τ)) = f(∂τ) = f(0) = 0, so that f(τ) ∈ Bn(C′). Thus f∗
is well-defined.

Now, to finish our proof, use the functoriality of the above map to see that, because φ is an
isomorphism, it induces an isomorphism on homology.
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Our next topic is the topological invariance of Hn(X). Our goal is to show that if X and Y are
∆-complexes and f : X → Y is a homeomorphism, then Hi(X) ∼= Hi(Y ) for all i.

The main problem is that if ∆n
σ−→ X is a simplex of X, then the composition ∆n

σ−→ X
f−→ Y may

not be a simplex of Y .

There are two main strategies for overcoming this. We can either work out the simplicial approxi-
mation theorem, in which we show that we can homotope our map sufficiently and subdivide our
simplices sufficiently so that any map can be realized as a simplical map, or we can come up with a
homology theory that we can’t compute but know is isomorphic to what we want.
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Lecture 5 (2012-10-10)

So far, we’ve seen how to start from a ∆-complex X and then form a complex of simplicial chains,
and from there we use homological algebra to define the homology groups Hi(x). But we’d like to
be able to start from a topological space without a specified ∆-complex structure and be guaranteed
to get isomorphic homology groups. In other words, we want to show that

X ∼= Y =⇒ Hi(X) ∼= Hi(Y ) for all i ≥ 0.

As is common in mathematics, this becomes easier if we enlarge our category, in this case to the
homotopy category.

Definition. Let X, Y be topological spaces, and f, g : X → Y maps. A homotopy from f to g,
denoted f ∼F g, is a map F : X × [0, 1]→ Y such that F |X×{0} = f and F |X×{1} = g.

For t ∈ [0, 1], we write Ft : X → Y for the function Ft(x) = F (x, t), so that F0 = f and F1 = g.

Definition. A map f : X → Y is a homotopy equivalence if there is some g : Y → X such that
f ◦ g ∼ idY and g ◦ f ∼ idX . We say that X ' Y .

Remark. f ∼ g is an equivalence relation, and X ' Y is an equivalence relation.

Definition. X is contractible if there is a point x ∈ X such that i : {x} ↪→ X is a homotopy
equivalence.

Example. Homotopy equivalence can’t tell you anything about contractible spaces, not even their
dimension, because Dn is contractible: the inclusion {0} ↪→ Dn has as a homotopy inverse the map
sending everything to 0. The homotopy is Ft(v) = tv.

Example. Any homeomorphism f : X → Y is also a homotopy equivalence.

Proposition. Suppose Hi is any functor from{
topological spaces (or ∆-complexes)

with continuous maps

}
→
{

abelian groups

with homomorphisms

}
satisfying

1. Functoriality: (idX)∗ = idHi(X), (f ◦ g)∗ = f∗ ◦ g∗.

2. Homotopy functor: if f ∼ g, then f∗ = g∗.

Then H∗ is a topological invariant; in fact, if f : X
'−−→ Y , then f∗ : Hi(X)

∼=−−→ Hi(Y ).

Proof. If f : X
'−−→ Y has g : Y → X as a homotopy inverse, then the fact that f ◦ g ∼ idY and

g ◦ f ∼ idX implies that

f∗ ◦ g∗ = id =⇒ f∗ surjective, g∗ ◦ f8 = id =⇒ f∗ injective,

and hence f∗ is an isomorphism.

How to Prove that Hi is a Homotopy Functor

Method 1: The Simplicial Approximation Theorem

The idea is that, given ∆-complexes X and Y with f : X
∼=−−→ Y ,
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Step 1: We show there exists a simplicial homeomorphism f ′ : X ′ → Y (where X ′ is the barycentric
subdivision of X)

Step 2: Then show that Hi(X) ∼= Hi(X
′).

Step 3: Then show that if f ′′ is another such map, then (f ′′)|∗ = (f ′)∗.

Step 4: Now declare f∗ = f ′∗.

Method 2: Singular Homology

Step 1: Construct singular homology, HS
i , which is easy to show is a homotopy functor.

Step 2: For any ∆-complex X, HS
i (X) ∼= Hi(X).

We’ll do it this way.

Singular Homology

Let X be any topological space, and for any n ≥ 0, define

Cn(X) = free abelian group on {continuous maps ∆n → X}.

Define ∂n : Cn(X)→ Cn−1(X) as the unique linear extension of

(σ : [v0 · · · vn] = ∆n → X) 7→ ∂nσ =
n∑
i=0

(−1)iσ|[v0···v̂i···vn]

Check that ∂n−1 ◦ ∂n = 0. This is the complex of singular chains.

Definition. The singular homology HS
i (X) of a space X is

HS
i (X) = Hi({Cn(X), ∂n}).

Induced maps: if f : X → Y is continuous, then we can send σ : ∆n → X to (f ◦ σ) : ∆n → Y , and
then extend this to f# : Cn(X)→ Cn(Y ).

It is trivial to check that f# is a chain map, and so induces f∗ : HS
n (X)→ HS

n (Y ), and also that
(f ◦ g)# = f# ◦ g#, which then implies that (f ◦ g)∗ = f∗ ◦ g∗.

Note that we’re building a dictionary:

{Cn(X), ∂n} C = {Cn, ∂n}
continuous maps f : X → Y chain maps f : C → D

f ∼ g homotopy chain homotopy
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Lecture 6 (2012-10-12)

Remember, this is our goal:

Theorem. If F : { topological spacescontinuous maps } → {
abelian groups
homomorphisms} is a functor that is a homotopy functor, i.e.

f ∼ g =⇒ f∗ = g∗,

then h : X
'−−→ Y (i.e. X and Y are homotopy equivalent) implies that h∗ : F(X)→ F(Y ) is an

isomorphism.

Given a space X, we defined its singular chain complex CSn (X) to be the free abelian group on the
set {continuous ∆n → X}, and then defined the singular homology HS

i (X) to be the homology of
this chain complex. That this is functorial is trivial; the map f# : CSn (X)→ CSn (Y ) induced by an
f : X → Y defined by f#(

∑
aiσi) =

∑
ai(f ◦ σi) is a chain map.

Proposition. Given f, g : X → Y with f ∼ g, then f∗ = g∗ : HS
i (X)→ HS

i (Y ) for all i ≥ 0.

Corollary. A homotopy equivalence h : X
'−−→ Y induces an isomorphism h∗ : HS

i (X)
∼=−−→ HS

i (Y ).

Proof of Prop. Given a homotopy F : X × [0, 1]→ Y with F0 = f and F1 = g, we will construct a
chain map Pi : CSi (X)→ CSi+1(Y ),

CSi+1(X)
δ // CSi (X)

Piyy

δ // CSi−1(X)

Pi−1yy

// · · ·

CSi+1(Y )
δ // CSi (Y )

δ // CSi−1(Y ) // · · ·

Morally, P is the (unique linear extension of) the ‘‘prism operator’’ which takes a simplex σ ∈ Ci(X)
to a ‘‘prism’’ P which is then sent to Y by the homotopy F ; thus, the prism allows us to compare
f ◦ σ with g ◦ σ. Of course, a prism is not a simplex, but we can view its image in Y as a chain in
Ci+1(Y ) by appropriately subdividing it.

v0 v1

v2

w0 w1

w2

X × [0, 1]

X × {1}

X × {0}

Y

f ◦ σ

g ◦ σ

F ◦ (σ × [0, 1])

σ

Taking the boundary of the prism operator produces

∂P =

top︷︸︸︷
g# −

bottom︷︸︸︷
f# −

sides︷︸︸︷
P∂ .
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A subdivision that works: given σ : [v0 · · · vi]→ X, define Pσ by

Pσ[v0 · · · vi+1] =
i∑

j=0

(−1)jF ◦ (σ × id)|[v0···vjwj ···wi]

Homological algebra interlude

Definition. Let φ, ψ : {Cn, ∂n} → {C ′n, ∂′n} be chain maps. A chain homotopy from φ to ψ is a
homomorphism P : Cn → C ′n+1 such that

φ− ψ = ∂P + P∂.

Key Prop. If φ and ψ are chain homotopic then φ∗ = ψ∗ : Hi(C)→ Hi(C) for all i.

Apply this to our situation: letting φ = g#, ψ = h# gives us what we want.

Proof of Key Prop. Given c ∈ Zi(C), we want to prove that φ∗([c]) = ψ∗([c]). This is the case if
and only if φ(c)− ψ(c) ∈ Bi(C′). We have that ∂c = 0, so

φ(c)− ψ(c) = P∂(c) + ∂P (c) = ∂P (c) .

We’d like the map Cn(X) ↪→ CSn (X) to induce isomorphisms on homology, but we’re missing
something deep when we’re thinking that.

Developing Singular Homology

The setup of relative (singular) homology is a subspace A ↪→ X. This induces an inclusion
Cn(A) ↪→ Cn(X). We define Cn(X,A) by

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0

(we’ll talk about exact sequences next time). This seems like a random algebraic thing to define,
but we’ll be able to relate Cn(X,A) to Cn(X/A).
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Lecture 7 (2012-10-15)

There will be an in-class midterm the week after next.

Until further notice, Hi(X) will denote the singular homology groups; also could be simplicial, really
just pretend I’m doing both at the same time.

We’ve defined simplicial and singular homology, and proved that singular homology is a homotopy
functor. However, we can’t compute singular homology. Thus, we want to show that Hi

∼= HS
i .

Relative Homology

Suppose that X is a topological space and A ⊂ X a subspace, with i : A ↪→ X the inclusion. This
obviously induces an injective chain map i# : Cn(A) ↪→ Cn(X); we’ll identify Cn(A) with its image
under i#. There is an induced map on homology i∗ : Hn(A) → Hn(X). Note that i∗ is often not
injective, for example with X = D2 and A = S1, we get H1(S1)→ H1(D2) is a map from Z to 0.

Definition. The relative chain group is defined to be

Cn(X,A) := Cn(X)/Cn(A).

Because ∂n on Cn(X) preserves Cn(A), we get an induced map ∂′n : Cn(X,A)→ Cn−1(X,A). Then

C′(X,A) = {Cn(X,A), ∂′n}

is a chain complex, and we define the relative homology group to be Hi(X,A) = Hi(C′(X,A)).

A cycle σ ∈ Zn(X,A) is just a chain σ ∈ Cn(X) such that ∂σ ∈ Cn−1(A).

A

σ

Definition. Suppose that A ⊂ Y . Then A is a deformation retract of Y , denoted Y
 
A, if there

is a homotopy F : Y × [0, 1] → Y such that F0 = idY , F1(Y ) ⊆ A, and for all t ∈ [0, 1], we have
Ft|A = idA.

Definition. A pair (X,A) of spaces is reasonable if there is a neighborhood Y ⊃ A such that Y
 
A.

This is the case for all ∆-complexes. This rules out crazy things like the topologist’s sine curve.

X
Y

A
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Theorem (Homology of quotient spaces). Let (X,A) be a reasonable pair. Then the quotient
P : (X,A)→ (X/A,A/A) induces an isomorphism for all i ≥ 0,

P∗ : Hi(X,A)→ Hi(X/A,A/A) ∼= H̃i(X/A).

Fundamental Theorem of Homological Algebra

Let

· · · // An+1
φn+1 // An

φn // An−1
// · · ·

be a sequence of abelian groups, or chain complexes, or R-modules, . . . with φn appropriate
morphisms. The sequence is exact at An if im(φn+1) = ker(φn).

Example. A short exact sequence (SES) is a sequence

0→ A
φ−→ B

ψ−−→ C → 0

which is exact at A, B, and C. Being exact at A is equivalent to φ being injective, being exact at C
is equivalent to ψ being onto. Key example:

0→
⊕

Cn(A)→
⊕

Cn(X)→
⊕

Cn(X,A)→ 0

This is a SES of chain complexes.

Theorem (Fundamental Theorem of Homological Algebra). Let A, B, and C be chain complexes,
and suppose that

0→ A→ B → C → 0

is a SES of chain complexes. Then there exists a connecting homomorphism δ : Hn(C)→ Hn−1(A)
and a ‘‘long exact sequence’’ of abelian groups

· · · // Hn(A)
φ∗ // Hn(B)

ψ∗ // Hn(C) δ // Hn−1(A)
φ∗ // Hn−1(B) // · · ·

Start of proof. We need to define δ : Hn(C)→ Hn−1(A). The natural candidate is

Zn(C)

��

// Zn−1(A) // Hn−1(A)

Hn(C) = Zn(C)/Bn(C)

44

A short exact sequence of chain complexes just means a diagram like this:
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...

��

...

��

...

��

0 // An+1
φn+1 //

∂n+1

��

Bn+1
ψn+1 //

∂′n+1

��

Cn+1
//

∂′′n+1

��

0

0 // An
φn //

∂n
��

Bn
ψn //

∂′n
��

Cn //

∂′′n
��

0

0 // An−1
φn−1 //

∂n−1��

Bn−1
ψn−1 //

∂′n−1��

Cn−1
//

∂′′n−1��

0

...
...

...
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Lecture 8 (2012-10-17)

Theorem (Fundamental Theorem of Homological Algebra). Let A, B, and C be chain complexes,
and suppose that

0→ A→ B → C → 0

is a SES of chain complexes. Then there exists a connecting homomorphism δ : Hn(C)→ Hn−1(A)
and a long exact sequence of abelian groups

· · · // Hn(A)
φ∗ // Hn(B)

ψ∗ // Hn(C) δ // Hn−1(A)
φ∗ // Hn−1(B) // · · ·

Proof. Our SES of chain complexes gives us the following diagram:

0 // An+1
φn+1 //

∂n+1

��

Bn+1
ψn+1 //

∂′n+1

��

Cn+1
//

∂′′n+1

��

0

0 // An
φn //

∂n
��

Bn
ψn //

∂′n
��

Cn //

∂′′n
��

0

0 // An−1
φn−1 // Bn−1

ψn−1 // Cn−1
// 0

We want to define δ : Hn(C) → Hn−1(A), mapping a homology class [c] to a homology class [a].
Note that Hn(C) = Zn(C)/Bn(C) and Hn−1(A) = Zn−1(A)/Bn−1(A).

There are three key rules to use in any ‘‘diagram chase’’:

1. ∂2 = 0

2. exactness

3. chain maps

Given an n-cycle c ∈ Cn, so that ∂c = 0, the fact that ψ is onto implies that there is a b ∈ Bn such
that ψ(b) = c. Note that

0 = ∂c = ∂ψ(b) = ψ(∂b) =⇒ ∂b ∈ ker(ψ) = im(φ).

Thus, there is an a ∈ An−1 such that φ(a) = ∂b. Check that a ∈ Zn−1(A):

φ(∂a) = ∂φ(a) = ∂∂b = 0.

But φ is injective, so ∂a = 0.

Thus, given [c] ∈ Hn(C), we can choose a representative c in Zn(C) and produce an a ∈ Zn−1(A).
Now we need to check that regardless of the representative we choose, the cycle a represents the same
class in homology. In other words, we want to check that the proposed map δ : Hn(C)→ Hn−1(A)
is well-defined.

Thus, suppose instead of c we’d chosen c+ ∂θ as a representative of [c], where θ ∈ Cn+1. We want
to show that δ will map it to the same [a].
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Because ψ is surjective, there is some b′ such that ψ(b+ b′) = c+ ∂θ. Thus, in particular ψ(b′) = ∂θ,
and hence

ψ(∂b′) = ∂ψ(b′) = ∂∂θ = 0.

This implies that ∂b′ ∈ ker(ψ) = im(φ), hence ∂b′ = φ(a′) for some a′. Our goal is to show that
there is an a′′ such that a′ = ∂a′′.

Note that ∂(b+ b′) = ∂b+ ∂b′ = ∂b+ ∂∂θ = ∂b, hence ∂(b′) = 0.

To finish, note that

φ((a+ a′)− a) = φ(a+ a′)− φ(a) = φ(a′) = ∂b′ = 0.

Now we need to prove the exactness of the long exact sequence (LES). Let’s just prove exactness at
Hn(B) for example. Given [b] ∈ Hn(B) such that ψ∗([b]) = 0, we want to show that there is some
[a] ∈ Hn(A) such that φ∗([a]) = [b].

We know that ∂b = 0, and because ψ∗([b]) = 0 ∈ Hn(C), we have that ψ(b) = ∂c for some c ∈ Cn+1.
Thus ψ(∂b) = ∂ψ(b) = ∂∂c = 0, so that ∂b ∈ ker(ψ) = im(φ), and hence there is some a′ such that
φ(a′) = ∂b.

Finish as an exercise.

Now let’s apply this theorem to a pair of spaces (X,A). The SES of chain complexes

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0

produces a LES

· · · → Hn+1(X,A)→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ · · ·

We’ll prove later using this tool that if (X,A) is reasonable, then Hn(X,A) ∼= Hn(X/A).

Example. Let (X,A) = (Dn, ∂Dn) for n ≥ 1. Note that ∂Dn = Sn−1.

Let k > 1. The LES says that

Hk+1(Dn,Sn−1)→ Hk(Sn−1)→ Hk(Dn)→ Hk(Dn, Sn−1)→ Hk−1(Sn−1)→ Hk−1(Dn)

Any homology of the disk for k > 1 is 0, because it is contractible. We can even show that directly
in singular homology, because homology is a homotopy functor and the disk is homotopy equivalent
to a point, whose singular homology we can compute. Thus, we get for any k > 1

0→ Hk(Sn)→ Hk−1(Sn−1)→ 0

and this just says that Hk(Sn) ∼= Hk−1(Sn−1).

Let’s look at what happens at the end.

H1(Dn,Sn−1) // H0(Sn−1) // H0(Dn) // H0(Dn, Sn−1) // 0

0 if n>1
Z if n=1

Z if n>1
Z2 if n=1 Z 0
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Our inductive claim is that for all n ≥ 1 and k > 1,

Hk(Sn) =

{
0 if k 6= 0, n

Z if k = 0, n.

Here is a table:

H0 H1 H2

S0 Z2 0 0

S1 Z Z 0

S2 Z 0 Z
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Lecture 9 (2012-10-19)

Last time we computed that H̃i(Sn) =

{
Z if i = n,
0 if i 6= n,

, and that H̃i(Dn) = 0 for all i. Thus, as a

corollary we can now conclude the Brouwer fixed point theorem.

This theorem is a big deal. Thurston used the Brouwer fixed point theorem to classify homeomor-
phisms of hyperbolic 3-manifolds up to homotopy by taking the space of hyperbolic metrics, which
any homotopy class of homeomorphisms acts on, and looking at the various places a fixed point
could be.

Now we’ll finally prove that H∆
i (X) ∼= HS

i (X).

Let X be a ∆-complex and A a subcomplex of X. There exists a chain map ψ : C∆
i (X,A)→ CSn (X,A)

sending σ to itself. This induces a homomorphism ψ∗ : H∆
n (X,A)→ HS

n (X,A).

Theorem. For all (X,A) and n ≥ 0, ψ∗ is an isomorphism.

Corollary (‘‘Amazing’’). H∆
n (X,A) doesn’t depend on which ∆-complex structure you choose!

Proof. We’ll do this for finite-dimensional X and A = ∅. Read about other cases in Hatcher.

Let Xk = ‘‘k-skeleton of X’’ = {the k-simplices σi : ∆k → X}.

We have a LES of the pair (Xk, Xk−1) in each homology theory, and a commutative diagram
comparing them because ψ is a chain map:

H∆
n+1(Xk, Xk−1) //

ψ∗
��

H∆
n (Xk−1) //

ψ∗
��

H∆
n (Xk) //

ψ∗
��

H∆
n (Xk, Xk−1) //

ψ∗
��

H∆
n−1(Xk−1)

ψ∗
��

HS
n+1(Xk, Xk−1) // HS

n (Xk−1) // HS
n (Xk) // HS

n (Xk, Xk−1) // HS
n−1(Xk−1)

We want to induct on k to prove that H∆
n (Xk)

∼=−−→ HS
n (Xk). If this is true for all k, then we’re

done, because (by our assumption that X is finite-dimensional), we have X = Xk for some k. The
claim is true for k = 0 because we know how to look at points. By our inductive hypothesis, the
2nd and 5th vertical arrows in our diagram are isomorphisms.

Now we will prove that the 1st and 4th vertical arrows are isomorphisms. Intuitively, taking the
k-skeleton of X (which is just a gluing of k-simplices) and quotienting by the (k − 1)-skeleton is
just crushing the boundaries of all of the k-simplices, turning the k-skeleton into a union and/or
wedge of spheres.

We have that

C∆
n (Xk, Xk−1) =

{
0 if n 6= k,

Zd if n = k.

where d = #(Xk \Xk−1). Thus, H∆
n (Xk, Xk−1) is the same. Now we want to find HS

i (Xk, Xk−1).

Recall that Xk = {σi : ∆k → Xk}. Define the map Φ :
∐
i(∆

k, ∂∆k)
σi−−→ (Xk, Xk−1). Then Φ

induces a homeomorphism ∐
∆k/

∐
∂∆k

∼=−−→ Xk/Xk−1
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essentially by the definition of X being a ∆-complex. This is the same as our proof that

(Dn, ∂Dn)→ (Dn/∂Dn, ∂Dn/∂Dn) = (Dn/∂Dn,pt)

induces an isomorphism in homology. This is the same map that we’re using in our big diagram,
so that map is the isomorphism (a priori, just knowing the domain and codomain are isomorphic
doesn’t tell us that our map is an isomorphism).

Lemma (Five Lemma). Given a map between exact sequences

A //

α
��

B //

β
��

C //

γ

��

D //

δ
��

E

η

��
A // B // C // D // E

where α, β, δ, η are isomorphisms, then γ is an isomorphism.

Now we’re done, as long as we can prove formally

Theorem (Excision). Given a topological space X and A,U ⊆ X subspace with U ⊂ int(A), the
inclusion i : (X/U,A/U) ↪→ (X,A) induces an isomorphism on homology.

Proof. We’ll do the case when ∆-complex and each of A, X − U , A− U is a subcomplex of X.

We get chain maps
Cn(X − U)→ Cn(X)→ Cn(X,A)

and call the composition φ. The map φ is surjective, which is clear - any chain in X without any
part in A certainly is a chain in X without any part in U . Then φ induces an isomorphism.

Cn(X − U,A− U)
def
=

Cn(X − U)

Cn(A− U)
∼= Cn(X,A).

Thus, we have proven that ∆-complex homology and singular homology are isomorphic.
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Lecture 10 (2012-10-22)

The midterm will be on November 2nd in class; it will be closed book, and cover everything up to
the class before that.

Theorem (Homology of quotients). Let X be a topological space, and A ⊆ X a reasonable subspace.
Then the quotient map p : (X,A)→ (X/A,A/A) induces for all i ≥ 0 an isomorphism

p∗ : Hi(X,A)→ Hi(X/A,A/A) ∼=
from homework

H̃i(X/A).

This theorem is not as powerful as it may seem, because it only allows us to study smashing the
subspace A to a point; we often want to glue two subspaces together without turning them into a
single point.

Proof. We will do the case that A is open.

As always, we get the induced map p∗ : Hn(X,A)→ Hn(X/A,A/A).

Hn(X,A)

p∗
��

∼=
excision

// Hn(X −A,A−A) = H − n(X −A)

(p|X−A)∗
��

Hn(X/A,A/A) ∼=
// Hn(X/A−A/A)

The key is that (p|X−A) is a homeomorphism onto its image.

We want to be able compute the homology of RPn, CPn, a knot S3 −K, and other interesting
spaces.

Two applications of what we’ve done so far include the Euler characteristic and the Lefschetz Fixed
Point Formula.

Definition. Let X be a finite ∆-complex. Let cn(X) denote the rank of C∆
n (X). The Euler

characteristic of X is
χ(X) =

∑
n≥0

(−1)ncn.

Let’s look at some ∆-complex structures on the disk:

0-simplices 1-simplices 2-simplices #0−#1 + #2

3 3 1 1
5 8 4 1
4 5 2 1

Theorem (Topological invariance of χ). Let X be a finite ∆-complex. Then

χ(X) =
∑
n≥0

(−1)nbn(X)
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where bn(X) is the nth Betti number of X,

bn(X) = rank(Hn(X)/Tn(X)).

In particular, because X ' Y =⇒ bn(X) = bn(Y ) for all n ≥ 0, the right side, and hence the left
side, depends only on the homotopy type of X.

The essential idea is that (letting lowercase letters denote the ranks of the groups typically denoted
by the corresponding uppercase letters):

hn = zn − bn, cn = zn + bn−1

and using this in the alternating sum makes the proof pop out.

Hopf Trace Formula

Let C = {Cn, ∂n} be a finite chain complex of finitely generated free abelian groups. Let f : C → C
be a chain map. We know that Cn ∼= Zd for some d, so picking a basis for Cn, we can think of each
fn ∈ Md(Z). Then tr(fn) is the trace of this matrix. Recall that

tr(ABA−1) = tr(B),

so tr(fn) doesn’t depend on choice of basis.

We also have that (fn)∗ acts on Hn(C)/Tn(C), where Tn denotes the torsion subgroup of Hn(C).
Thus, we can also consider tr((fn)∗).

Theorem (Hopf Trace Formula). We have∑
n≥0

(−1)ntr(fn) =
∑
n≥0

(−1)ntr((fn)∗)

Remark. Let Cn = C∆
n (X), and f = (idX)#. Then we get that∑

n≥0

(−1)n rank(C∆
n (X)) =

∑
n≥0

(−1)nbn(X).

Proof. We have Bn ⊆ Zn ⊆ Cn, all free abelian groups. First, pick a basis ∂σ1, . . . , ∂σr for Bn;
extend to (not a basis; a maximal Z-linearly independent set) z1, . . . , zs ∈ Zn; then extend
to a basis of Cn. Thus, we have a basis for Cn that we’ve broken up into boundaries, plain old
chains, and cycles.

We want to compute, for each element of the basis above, the coefficient of v in fn(v). Let’s call
this λ(fn(v)).

Because fn is a chain map,
λ(fn(∂n+1σj)) = λ(fn+1(σj))

Then ∑
n≥0

(−1)ntr(fn) =
∑
n≥0

(−1)n
n∑
k=0

λ(f(zk))

because all other terms cancel in pairs. Because the action of f∗ on [zi] ∈ Hi is just sending it to
[f(zi)], the coefficents of the action of f∗ and of f itself are the same. Thus, the left side is equal to∑

n≥0

(−1)ntr((fn)∗).
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Lecture 11 (2012-10-24)

Neat fact: given closed A1, . . . , An+1 ⊂ Sn such that
⋃
Ai = Sn, there exists a j such that Aj

contains a pair of antipodal points.

The Lefschetz Fixed Point Theorem

Last time, we talked about the Hopf trace formula, where we had a complex C = {Cn, ∂n} and a
chain map ϕ : C → C, which induces maps (ϕn)∗ : Hn(C)/Tn(C) ö, and deduced that∑

(−1)ntr(ϕn) =
∑

(−1)ntr((ϕn)∗).

Let’s do some setup first. Let X be a finite ∆-complex, and let f : X → X be a continuous map.
Consider (fn)∗ : Hn(X)/Tn(X) ö.

Definition. The Lefschetz number of f is

Λ(f) =
∑
n≥0

(−1)ntr((fn)∗).

Theorem (LFPT). If Λ(f) 6= 0, then f has a fixed point.

Corollary. Let X be a contractible ∆-complex, e.g. X = Dn. Then any f : X → X has a fixed
point.

Proof of Corollary. By hypothesis, we have that X is ‘‘aspherical’’, i.e.

Hn(X) =

{
Z if n = 0,

0 if n > 0

This implies that (fn)∗ = 0 for all n > 0, and hence tr((fn)∗) = 0 for all n > 0. We also have (from
your current homework)

tr((f0)∗) = tr(id) = tr([1]) = 1.

Thus,
Λ(f) = 1− 0 + 0− · · · = 1 6= 0.

Proof of Lefschetz. Suppose that f(x) 6= x for all x ∈ X.

Put a metric d on X. There is some δ > 0 such that d(f(x), x) > δ for all x ∈ X because f is
continuous, f(x) 6= x for all x, and because X is compact. Now, by barycentrically subdividing, we
can put a ∆-complex structure on X such that diam(σ) < d

100 for all simplices σ.

By simplicial approximation (which we haven’t covered in detail, but you should know the statement
at least), we have that, possibly after further subdividing, there is a simplicial map h : X → X such
that h ∼ f and d(h(x), f(x)) ≤ δ

2 for all x ∈ X.

Thus, for all x ∈ X, we have d(h(x), x) > δ
10 >

δ
100 , and because h is simplicial, we have h(σ)∩σ = ∅

for all simplices σ.
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We claim that this implies tr((hn)#) = 0 for all n ≥ 0. The matrix for (hn)# acting on Cn(X) ∼= Zd
looks like 

σ1 σ2 · · · σd

σ1 0
σ2 0
...
σd 0


so, applying the Hopf trace formula,

Λ(h) =
∑

(−1)ntr((hn)∗) =
∑

(−1)ntr((hn)#) = 0.

But f ∼ h, so f∗ = h∗, and so Λ(f) = Λ(h) = 0.

Corollary (of Brouwer). Let A be an n× n matrix with real entries aij > 0. Then there exists a
real eigenvalue λ with a real eigenvector (v1, . . . , vn) with all vi > 0.

Proof. This has applications to the adjacency matrix of a graph, and to probability.

Let X = {rays through 0 in a positive orthant}, which is homeomorphic to ∆n−1. We have that A
maps X to X by hypothesis. Then Brouwer implies that there exists an x ∈ X such that Ax = x,
i.e. there is a ray R~x such that A~v = λ~v Then we must have λ > 0 and vi > 0 for all coordinates of
~v = (v1, . . . , vn).

Remark (Weil’s Observation). Suppose that f : X → X is a homeomorphism of compact manifolds.

Assumption: Suppose that Λ(f) = # of fixed points of f , and that Λ(fn) = # of periodic points of
f of period n, i.e. points with fn(x) = x.

Claim: There exist algebraic integers α1, . . . , αr, β1, . . . , βs such that

Λ(fn) = # of periodic points of f of period n =
∑

αni −
∑

βnj .

The amazing thing is that the left side is obviously an integer, but the right side rarely is if you
choose arbitrary αi and βi.

The proof is just that

Λ(fn) =
∑
i

(−1)itr((fni )∗)

where (fni )∗ : Hn(X)/Tn(X) ö, and Hn(X)/Tn(X) ∼= Zd, so that (fi)∗ ∈ Md×d(Z) and hence its
eigenvalues λ1, . . . , λs are algebraic integers, so that tr((fni )∗) =

∑
λni .

Moreover, he observed that, if X is a projective smooth variety defined over Z, then

X(Fpn) =
∑

αni −
∑

βnj

and he conjectured there was a relationship. Indeed, X(Fp) ö Frobp, and fix(Frobnp ) = X(Fpn).∑
(−1)i Frobnp

œ

H i
etal(X)︸ ︷︷ ︸

∼=Hi(X(C))
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Lecture 12 (2012-10-26)

As a reminder, the midterm is Friday, November 2, 11am - 12:30pm.

Maps of Spheres

A map f : Sn → Sn induces a map f∗ : Hn(Sn)→ Hn(Sn). Recall that Hn(Sn) ∼= Z, having [∆1−∆2]
as a generator, where ∆1 and ∆2 are n-simplices glued along their boundaries to form the ‘‘equator’’
of the sphere.

Definition. The degree of f is the unique deg(f) ∈ Z such that f∗(z) = deg(f)z for all z ∈ Hn(Sn).

Note that

deg(f ◦ g)z = (f ◦ g)∗(z) = f∗(g∗(z)) = f∗(deg(g)z) = deg(g)f∗(z) = deg(f) deg(g)z,

and hence deg(f ◦ g) = deg(f) deg(g). Also, if f ∼ g, then f∗ = g∗, and hence deg(f) = deg(g). In
fact, the converse is true; that is, considering the map

{f : Sn → Sn}/∼ −→ Z

sending [f ] to deg(f), this map is a bijection. This is an old theorem:

Theorem (Hopf). For any f, g : Sn → Sn, then f ∼ g ⇐⇒ deg(f) = deg(g).

Here are some basic properties.

• If f is not surjective, then deg(f) = 0. This is because there is an x such that f(Sn) ⊆ Sn − x,
and Sn − x ∼= Rn, so the fact that we have a commutative diagram

Hn(Sn) Hn(Sn)

Hn(Sn − x)

= Hn(Rn) = 0

f∗

f∗

forces f∗ = 0.

• We can consider the suspension of a map between spheres, Σf : ΣSn → ΣSn. Note that
ΣSn ∼= Sn+1 (this is clear if you draw a picture). We get a commutative diagram

Hn(Sn) Hn+1(Sn+1)

Hn(Sn) Hn+1(Sn+1)

i

∼=

f∗ Σf∗

implying that deg(f) = deg(Σf).

Last edited
2012-12-09

Math 317 - Algebraic Topology Page 28
Lecture 12



• Let d ≥ 1. Let ψd : S1 → S1 be the map z 7→ zd. We give S1 two different ∆-complex
structures,

X =

τ1

τ2

τd

···

Y =

σ

Then ψd(τi) = σ for all i, so that the map

(ψd)∗ : H1(X)︸ ︷︷ ︸〈[∑d
i=1 τi

]〉→ H1(Y )︸ ︷︷ ︸
〈[σ]〉

satisfies

(ψd)∗([
∑d

i=1 τi]) = [(ψd)#
∑d

i=1 τi]

= [
∑d

i=1 ψd(τi)]

= [
∑d

i=1 σ]

= d[σ]

and hence deg(ψd) = d. Note that we implicitly used that this diagram commutes:

H∆
1 (X) H∆

1 (Y )

HS
1 (S1) HS

1 (S1)

f∆
∗

φ ∼= φ∼=

fS∗

but this is just because φ (the isomorphism between simplicial and singular homology) is
natural, i.e. the composition of degrees doesn’t depend on the chosen ∆-complex structure.

Thus, for all n ≥ 1 and d ∈ Z there is a map f : Sn → Sn of degree d, namely Σn−1ψd.

In differential topology, while you can run into trouble with a few bad points, you can
generically get the degree in a similar way. For example, consider the suspension Σψd, which is
the map from S2 to S2 wrapping the sphere around itself so that a lune of angle 2π

d is wrapped
over the entire sphere.
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Then the preimage of almost every point is a set of d points, except the north and south poles,
which have only one preimage (they are preserved).

• Let Sn = {(x1, . . . , xn+1) |
∑
x2
i = 1} ⊂ Rn+1. Let r : Sn → Sn be the reflection map

r(x1, x2 . . . , xn+1) = (−x1, x2, . . . , xn+1).

We claim that deg(r) = −1. Here is the proof: consider the ∆-complex X = ∆n
1 t∆n

2 where
∂∆n

1 = ∂∆n
2 . Note that X ∼= Sn. Then the induced map r# : Cn(X)→ Cn(X) just swaps the

simplices, ∆1 7→ ∆2 and ∆2 7→ ∆1. Also, note that Hn(X) ∼= Z = 〈[∆1 −∆2]〉. Thus,

r∗([∆1 −∆2]) = [r#(∆1 −∆2)] = [∆2 −∆1] = −[∆1 −∆2]

and hence deg(r) = −1.

As a corollary, this implies that the antipodal map A(x1, . . . , xn+1) = (−x1, . . . ,−xn+1) has
degree (−1)n+1, because

deg(A) = deg(r1 ◦ r2 ◦ · · · ◦ rn+1) = deg(r1) deg(r2) · · · deg(rn+1) = (−1)n+1,

and hence A 6∼ idSn when n is even, and A ∼ idSn when n is odd.

Which maps f : Sn → Sn have no fixed points? Well, the antipodal map A, obviously; any others?

The Lefschetz number of any map f : Sn → Sn is

Λ(f) = tr(f∗ : H0(Sn) ö)︸ ︷︷ ︸
= 1

+(−1)n deg(f)

Note that if f has no fixed points, then we must have Λ(f) = 0, hence deg(f) = (−1)n+1, and
therefore f ∼ A by Hopf’s theorem. Thus, f : Sn → Sn has no fixed points implies that f ∼ A.

Definition. Consider Sn−1 as a subset of Rn. A continuous vector field on Sn−1 is a continuous
map v : Sn−1 → Rn such that v(z) ⊥ z for all z ∈ Sn−1.

Theorem. The n-sphere Sn, for n ≥ 1, admits a nowhere zero vector field v ⇐⇒ n is odd.

Proof. To see ⇐= , consider v(x1, . . . , xn+1) = (−x2, x1,−x4, x3, . . . ,−xn+1, xn). We needed n
odd to be able to pair off the coordinates.

To see =⇒ , use the vector field v to prove idSn−1 ∼ A. If v is our nowhere vanishing vector field,
then consider the map vt : Sn−1 × I → Sn−1 defined by

vt(z) = − cos(πt)z + sin(πt)v(z).

As t goes from 0 to 1, this map slides a point z ∈ Sn along the great circle connecting z to −z
in the direction determined by v(z). This is a homotopy from idSn−1 to A, so deg(idSn−1) = 1 =
(−1)n+1 = deg(A), hence n is odd.

Theorem (Adams, 1962). Let n ≥ 1, and write n + 1 = 24a+b(2k + 1) where a, b, k ∈ Z, and
0 ≤ b ≤ 3. Then the maximum number of linearly independent vector fields on Sn is precisely
2b + 8a− 1.
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Lecture 13 (2012-10-29)

CW-Complexes and Cellular Homology

Definition. CW-complexes are built up in an inductive process. The base of the inductive process
is X(0), the 0-skeleton, consisting of discrete points. The inductive step is as follows: assuming we
have constructed X(n−1), we are given

• a collection of n-balls {Dnα | α ∈ I},

• maps {φα : ∂Dnα → X(n−1)} attaching the boundaries of the balls to the (n− 1)-skeleton.

Then we define

X(n) =
X(n−1) t

∐
α∈I Dnα

x ∼ φα(x) for all α ∈ I, x ∈ ∂Dnα
.

The space X =
⋃
n≥0X

(n) built in this manner is called a CW-complex. When X ∼= X(N), we say
that X is N -dimensional.

Note that we give X the weak topology, i.e. we declare A ⊆ X to be open precisely when φ−1
α (A) ⊆ Dnα

is open for all cells φα : Dnα → X.

Examples.

• A 1-dimensional CW-complex is equivalent to a graph. Here is an example:

X0
D1
α φα

D1
β

φβ

D1
γ

φγ

X1

• The n-sphere Sn can be given a CW-complex structure with one 0-cell p and one n-cell φ, by
letting φ : Dn → {p} be the constant map.

p p p
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• The surface Σg of genus g ≥ 1 can be given a CW-complex structure with one 0-cell v, 2g 1-cells
a1, b1, . . . , ag, bg, and one 2-cell φ : ∂D2 → X(1) defined by the word a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g .
The 1-skeleton just looks like

a1

b1
a2

b2

ag

bg

...

We attach ∂D2 to the 1-skeleton X(1) as follows. We break up ∂D2 into 4g arcs of angle 2π
4g ,

D2

a1

b1

a1
b1···

and define φ by mapping an arc to the indicated edge in the 1-skeleton, with degree ±1
depending on the sign determined by the word (this is reflected in the orientations of the arcs
in the picture).

• Real projective space RPn is defined to be

{lines through origin in Rn+1} =
Rn+1 \ {0}
u∼v iff u=rv

for some r∈R×
=
{v ∈ Rn+1 \ {0} : ‖v‖ = 1}

v ∼ −v
=

Sn

v ∼ −v
.

Denoting the upper hemisphere of Sn by Dn+,

Dn+

then we can also see that

RPn =
Dn+

v ∼ −v for all v ∈ ∂Dn+
.
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Note that ∂Dn+ = Sn−1. We have the quotient map φ : Sn−1 → RPn−1 identifying v and
−v for all v ∈ Sn−1; this is just the attaching map for the n-cell Dn+ when we give RPn a
CW-complex structure.

In general, RPn is a CW-complex with 1 i-cell for i = 0, 1, . . . , n. Thus, RP0 is just a point,
RP1 is S1, and

RPn =
RPn−1 t Dn+

v ∼ φ(v) for all v ∈ ∂Dn
.

How to Compute CW Homology

Let X be a CW-complex. We define a chain complex CCW(X) = {CCW
n (X), dn} by letting CCW

n (X)
be the free abelian group on the n-cells, and the boundary maps dn : CCW

n (X)→ CCW
n−1(X) satisfy

dn−1 ◦ dn = 0, but we’ll skip their definition to get to some calculations.

Of course, lastly we define HCW
i (X) = Hi(CCW(X)).

Examples.

• Let’s compute the CW homology of Sn, for n ≥ 2. The CW chain complex is just

CCW
n+1(Sn) CCW

n (Sn) CCW
n−1(Sn) · · · CCW

0 (Sn) 0

0 Z 0 · · · Z 0

and therefore

HCW
i (Sn) ∼= CCW

i (Sn) =

{
Z if i = 0 or n,

0 otherwise.

This agrees with singular, and hence also simplicial, homology.

• The CW chain complex for Σg is

· · · 0 Z Z2g Z 0

=

〈f〉

=

〈a1, b1, . . . , ag, bg〉

=

〈v〉

d2 d1

Every ai and bi is sent to v − v = 0, so that d1 = 0. Now note that d2 sends f to

a1 + b1 − a1 − b1 + a2 + · · ·+ ag + bg − ag − bg = 0

and therefore d2 = 0. Thus,

HCW
i (Sn) ∼= CCW

i (Sn) =


Z if i = 0 or 2,

Z2g if i = 1,

0 otherwise.

Morally, the boundary map in CW homology is measuring degree of the attaching maps of
the cells.
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Lecture 14 (2012-10-31)

The midterm will be Friday, November 2 from 11am to 12:30pm, in Ryerson 352 (the Barn).

Cellular Homology

Proposition. Let X be a CW-complex. Then for all n ≥ 0,

1. H̃i(X
(n), X(n−1)) =

{
Zd if i = n

0 if i 6= n

}
where d is the number of n-cells in X.

2. H̃i(X
(n)) = 0 for all i > n.

3. The inclusion X(n) ↪→ X induces an isomorphism i∗ : Hk(X
(n))→ Hk(X) for all k < n.

Proof. Consider the LES of the pair (X(n), X(n−1)). Also, observe that H̃i(X
(n), X(n−1)) ∼= H̃i(X

(n)/X(n−1)),
and X(n)/X(n−1) is a wedge of spheres. Lastly, we have a commutative diagram

Dnα X(n) =
X(n−1) t

∐
αDnα

x ∼ φα(x) for all x ∈ ∂Dnα

Dnα/∂Dnα X(n)/X(n−1) ∼=
∨
Sn

Definition. The group of cellular n-chains on X is defined to be CCW
n (X) := Hn(X(n), X(n−1)).

Thus, CCW
n (X) ∼= Zd where d is the number of n-cells in X.

Our goal is to define the boundary homomorphisms dn : CCW
n (X)→ CCW

n−1(X) and show that they
satisfy dn−1 ◦ dn = 0.

Thinking about the definition of CCW
n , we recall that in the LES of (X(n), X(n−1)), we had a boundary

map ∂n : Hn(X(n), X(n−1))→ Hn−1(X(n−1)).

We can also consider the map (in−1)∗ : Hn−1(X(n−1))→ Hn−1(X(n), X(n−1)).

Now, we define dn = in−1◦∂n, which has the right domain and range: dn goes from Hn(Xn, X(n−1)) =
CCW
n (X) to Hn−1(X(n−1), X(n−2)) = CCW

n−1(X).

You should check on your own dn−1 ◦ dn = 0 for all n ≥ 0. Thus, CCW(X) = {CCW
n (X), dn} is a

chain complex.

Definition. We define the CW homology of X to be HCW
n (X) := Hn(CCW(X)).

Theorem. Let X be any CW-complex. Then HCW
n (X) ∼= Hn(X) for all n ≥ 0.

Corollary. We then have that

• Hn(X) = 0 for all n > dim(X).

• rank(Hn(X)) ≤ # of n-cells of X.

• HCW
n (X) is a homotopy invariant.
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Remark. By the topological invariance of HCW
n and the Hopf trace formula, we can compute

χ(X) =
∑
n≥0

(−1)n rank(CCW
n (X)).

For example,

χ(Sn) = 1 + (−1)n =

{
0 if n odd,

2 if n even.

χ(RPn) = 1− 1 + 1− · · ·+ (−1)n =

{
0 if n odd,

1 if n even.

χ(Σg) = 1− 2g + 1 = 2− 2g.

To compute HCW
n (X), we need to understand the boundary maps dn. We have

CCW
n (X) = Z-span of {σα : Dnα → X(n)}

CCW
n−1(X) = Z-span of {τβ : Dn−1

β → X(n−1)}

Consider the composition of the attaching map of an n-cell σα with the quotient map sending
X(n−1) to X(n−1)/X(n−2):

∂Dn

τ1(Dn−1)

τ2(Dn−1)

· · ·

σα

= X(n−1)/X(n−2)

Then, for all β, consider the composition of that with the quotient map from X(n−1)/X(n−2) to just
one of the (n− 1)-cells τβ:

Sn−1 = ∂Dnα X(n−1) X(n−1)/X(n−2) τβ(Dn−1) = Sn−1
σα|∂Dnα quotient

more
quotient

This is a map ψα,β = Sn−1 → Sn−1.

Lemma (Hatcher, p.141). For all α, β, we have

dn(σα) =
∑
β

dα,βτβ

where dα,β = deg(ψα,β).

Let’s work out the homology of the torus this way. Let X = T2. The CW chain complex is

C2 C1 C0

Z Z2 Z 0
d2 d1
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We obviously have d1 = 0. Now let’s think about ψαa. It may be helpful to note that the map
sending ∂D2

α to τa(D1) factors through the quotient collapsing the b arcs:

∂D2
α

ab

a b

a

a

ba

We clearly have that deg(ψαa) = 1− 1 = 0, and similarly, deg(ψαb) = 0. Therefore d2 = 0, and

HCW
i (T2) ∼= CCW

i (T2) =


Z if i = 0, 2

Z2 if i = 1

0 otherwise.
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Lecture 15 (2012-11-02)

Midterm in Ryerson 352 (the Barn) from 11am to 12:30pm.
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Lecture 16 (2012-11-05)

Today we’ll discuss Mayer-Vietoris, which is one of the most powerful computational tools we have,
and we’ll be moving to cohomology soon.

Let X be a space and consider injective maps i : A ↪→ X and j : B ↪→ X (we may as well consider
A and B as subsets of X) with the property that A∪B = X, and (X,A) and (X,B) are good pairs.

Theorem (Mayer-Vietoris). There is a long exact sequence

· · · Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B) · · ·∂

Proof. There is a short exact sequence of chain complexes

0 Cn(A ∩B) Cn(A)⊕ Cn(B) Cn(A+B) 0

z (i(z), j(z))

(x, y) x− y

i# ⊕ j# φ

where Cn(A+B) is the subgroup of Cn(X) consisting of chains of the form
∑
aiσi +

∑
ciτi where

σi ∈ Cn(A) and τi ∈ Cn(B).

The fundamental theorem of homological algebra implies that we get a long exact sequence

· · · Hn(A ∩B) Hn(A)⊕Hn(B) Hn(A+B) Hn−1(A ∩B) · · ·

where Hn(A+B) is the nth homology of the chain complex {Cn(A+B)}.

The key claim is that the inclusion h : Cn(A+B)→ Cn(X) induces an isomorphism on homology,

h∗ : Hn(A+B)
∼=−−→ Hn(X) for all n ≥ 0. The idea of the proof of this key claim is as follows.

If X is a ∆-complex and we can triangulate X such that the triangulation restricts to triangulations

on A, B, and A ∩B, then the key claim is easy since C∆
n (A+B)

∼=−−→ C∆
n (X). In general, we need

to subdivide X (use simplicial approximation), because for example, we’d run into trouble with a
simplex like this:

A B

Applications.

• Let X = Sn, A = Dn+, B = Dn−, so that A ∩ B = Sn−1 (really, we mean a little regular
neighborhood around these subsets).

A

B
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Then we get in the Mayer-Vietoris sequence

Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B)

= 0⊕ 0

So, there are exact sequences for all n ≥ 2

0 Hn(X) Hn−1(A ∩B) 0

so we get that Hn(Sn) ∼= Hn−1(Sn−1) for all n ≥ 2.

• Given n-manifolds M and N for n ≥ 2, the connect sum M #N is the n-manifold obtained
via picking Dn1 ⊂M and Dn2 ⊂ N , and

M #N =
(M − int(Dn1 )) t (N − int(DN2 ))

∂Dn1 ∼ ∂Dn2

We can apply Mayer-Vietoris to M # N by letting X = M # N , A = M − int(Dn1 ), B =
N − int(Dn2 ), so that A ∩B = ∂Dn1 = ∂Dn2 ∼= Sn−1. We get

Hn(Sn−1) Hn(M − int(Dn1 ))⊕Hn(N − int(Dn2 )) Hn(X) Hn−1(M#N)

and we can compute e.g. Hn(M − int(Dn1 )) using Mayer-Vietoris in terms of homology of M .

We can use this to get another computation of the homology of Σg, because Σg
∼= Σg−1 #T2.

· · ·

∼= · · ·

Note that M # Sn ∼= M for any n-manifold M .

Definition. A manifold M is prime when M ∼= A#B for n-manifolds A, B, we must have A ∼= Sn
or B ∼= Sn.

Theorem (Kneser, 1920’s). Every closed 3-manifold M can be expressed as a connect sum of
prime closed 3-manifolds,

M ∼= M1 # · · ·#Mr,

and this is unique up to ordering, i.e. if M ∼= N1 # · · ·#Ns, then r = s and we can permute the
indices so that Mi

∼= Ni.

Theorem (Schoenflies). S2 − S1 has 2 components, each homeomorphic to int(D2).
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Lecture 17 (2012-11-07)

Cohomology

Fix an abelian group G, for example G = Z, R, Q, or Z/nZ.

For any abelian group A, G∗ = Hom(A,G) is an abelian group under pointwise addition. For any
homomorphism ψ : A→ A′, there is a dual homomorphism ψ∗ : (A′)∗ → A∗ defined by ϕ 7→ ϕ ◦ ψ,
and for any f : A→ A′ and g : A′ → A′′, we have (g ◦ f)∗ = f∗ ◦ g∗. Lastly, (idA)∗ = idA∗ .

Thus, we have proved that Hom(−, G) is a contravariant functor{
abelian groups

and homomorphisms

}
−→

{
abelian groups

and homomorphisms

}
which acts on objects by A 7→ A∗, and acts on morphisms by (f : A→ B) 7→ (f∗ : B∗ → A∗).

Given a chain complex C = {Cn, ∂n} of free abelian groups, its nth homology Hn(C) measures how
far the complex is from being exact at Cn.

We will now form a new chain complex C∗ = {C∗n, δn}, where the δn are just the duals of the ∂n.
Specifically, looking at ∂n : Cn → Cn−1, we set δn−1 = (∂n)∗ : C∗n−1 → C∗n. We’d like to take the
homology of C∗, but it’s going the wrong way:

· · · C2 C1 C0 0
δ2 δ1 δ0

Note that (δ ◦ δ) = (∂∗ ◦ ∂∗) = 0, so we will call the δ’s coboundary maps, and we call C∗ a cochain
complex. The group C∗n is called the group of n-cochains.

Definition. Given a chain complex C = {Cn, ∂n} and abelian group G, the associated cochain
complex C∗ = {C∗n, δn} is defined as above, and the cohomology of C with coefficients in G is defined
to be

Hn(C;G) =
ker(δn)

im(δn−1)
.

Given a chain map f : C → C′, we get an induced map on cohomology in the other direction,
f∗n : Hn(C′;G)→ Hn(C;G). This is because

f ◦ ∂ = ∂ ◦ f =⇒ δ ◦ f∗ = ∂∗ ◦ f∗ = f∗ ◦ ∂∗ = f∗ ◦ δ.

This also implies that if f is chain homotopic to g, then f∗ = g∗.

Theorem (FTHA, cohomology version). Given a short exact sequence of chain complexes

0 A B C 0

there is a long exact sequence

· · · Hn+1(C) Hn(A) Hn(B) Hn(C) · · ·

Next class we will prove the universal coefficient theorem, which will allow us to compare homology
with cohomology. Let’s do an example first though. Fix G = Z, and consider this chain complex:
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· · · 0 Z Z Z 0
× 2 0

The dual of the zero map is obviously the zero map. Note that Hom(Z,Z) ∼= Z, with the identity
map idZ as the generator. It is easy to see that (×2) : Z→ Z induces the map from Hom(Z,Z) to
Hom(Z,Z) which is also multiplication by 2.

Thus, corresponding cochain complex is

· · · 0 Z Z Z 0
× 2 0

Therefore, the homology and cohomology are

Hi(C) =


Z i = 0 Z

Z/2Z i = 1 0
0 i = 2 Z/2Z

 = H i(C,Z)

So in general, how can we compare H∗(C;G) with H∗(C)?

We claim that there is a homomorphism Ψ : Hn(C;G)→ Hom(Hn(C);G). We construct it as follows.
Given a ϕ ∈ Z∗n ⊂ C∗n = Hom(Cn, G), we have that δϕ = 0 ∈ C∗n+1. Thus, for any σ ∈ Cn+1, we
have that (δϕ)(σ) = (ϕ ◦ ∂)(σ) = ϕ(∂σ) = 0, so ϕ(Bn) = 0. Therefore, ϕ : Cn → G factors through
a map ϕ̃ : Cn/Bn → G, and then restricting to Zn, we get a map ϕ̃|Zn : Zn/Bn → G, i.e. a map
from Hn(C) to G, which is exactly the kind of object we are claiming Ψ sends ϕ to.

You should check on your own that Ψ is well-defined, and that in general Ψ may have a kernel.
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Lecture 18 (2012-11-09)

The Universal Coefficient Theorem

Fix an abelian group G, and let C = {Cn, ∂n} be a chain complex. As we discussed last time, this
gives us a cochain complex C∗ = {C∗n, δn = ∂∗n−1}, and then the cohomology groups Hn(C;G) with
coefficients in G.

Last time, we defined a map Ψ : Hn(C;G)→ Hom(Hn(C), G). It is easy to show that Ψ is onto, so
we get a short exact sequence

1 ker(Ψ) Hn(C;G) Hom(Hn(C), G) 1

We want to compute ker(Ψ), since it represents the difference between homology and cohomology.

You should read in Hatcher about the functor Ext(−, G), which goes from Ab to Ab, and also read
about free resolutions. The key step will be showing that ker(Ψ) = Ext(Hn−1(C), G). This then
imples the universal coefficient theorem, because we get a short exact sequence

1 Ext(Hn−1(C), G) Hn(C;G) Hom(Hn(C), G) 1

The following proposition explains how to compute Ext(−, G).

Proposition.

1. Ext(A⊕B,G) = Ext(A,G)⊕ Ext(B,G).

2. Ext(A,G) = 0 if A is a free abelian group.

3. Ext(Z/nZ, G) = G/nG, where nG = {ng | g ∈ G}.

In fact, when G = Z, we have

Ext(Hn−1(C, G)) ∼=
Hn(C)

torsion(Hn(C))
⊕ torsion(Hn−1(C)).

Remark. The functor Ext(A,G) is called that because it has to do with extensions of G by A, i.e.
ways of picking a group Γ so that

1 A Γ G 1

Thus, cohomology is a key tool for the classification of groups.

Cohomology of Spaces

For any topological space X (respectively, any ∆-complex, CW-complex), we define

Hn(X;G) := Hn({Csing
n (X)})

Hn
CW(X;G) := Hn({CCW

n (X)})
Hn

∆(X;G) := Hn({C∆
n (X)})

Then because the universal coefficient theorem is natural in C, and the isomorphisms between the
various homology theories are natural, we can conclude that

Hn(X;G) ∼= Hn
∆(X;G) ∼= Hn

CW(X;G)
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when they are all defined (i.e. when X is a ∆-complex, CW-complex). Moreover, naturality together
with the corresponding fact about homology implies that f ∼ g we have f∗ = g∗ (so that H i is a
homotopy functor), and we even get the long exact sequence of a pair, excision, and Mayer-Vietoris
for cohomology, all from naturality.

Cup Product

Fix a ring R (e.g. R = Z, Q, Z/dZ, R, Qp, . . .). Let X be a space. Considering the underlying
additive abelian group of R, we get the abelian groups Hn(X;R) for all n ≥ 0, and we let

H∗(X;R) =
⊕
n≥0

Hn(X;R)

which is a (graded) abelian group. Our goal is to make H∗(X;R) into a ring. This additional ring
structure on cohomology will let us distinguish S1 ∨ S1 ∨ S2 and T2, even though

Hi(S1 ∨ S1 ∨ S2) =


Z i = 0
Z2 i = 1
Z i = 2

 = Hi(T2).

For a ∈ Ci(X;R) = Hom(Ci(X);R) and b ∈ Cj(X;R), for any (σ : [v0v1 · · · vi+j ]→ X) ∈ Ci+j(X)
we define a` b ∈ Ci+j(X;R) by

(a` b)(σ) = a(σ|[v0v1···vi]) ·↑
mult. in R

b(σ|[vi···vi+j ]).

We have the ‘‘graded product rule for δ’’:

δ(a` b) = δa` b+ (−1)ia` δb

This implies that if δa = δb = 0, then δ(a` b) = 0 and δa` b = a` δb = 0, so that the cup product
map

` : Ci(X;R)× Cj(X;R)→ Ci+j(X;R)

induces a map in homology

` : H i(X;R)×Hj(X;R)→ H i+j(X;R),

defined by [a]` [b] = [a` b]. This is a bilinear map, so passing to the tensor product and putting
all degrees together, we get a homomorphism

` : H∗(X;R)⊗H∗(X;R)→ H∗(X;R),

In summary, H∗(X;R) is a graded commutative ring a` b = (−1)ijb` a, where addition is just
addition of cocycles, and multiplication is `. For any map f : X → Y , we get an induced ring
homomorphism f∗(a` b) = f∗(a)` f∗(b).

The additive and multiplicative identity are the constant functions 0, 1 ∈ H0(X;R) = Hom(C0(X);R).
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Lecture 19 (2012-11-12)

Today we’ll look at the cup product structure on the cohomology of a few spaces.

Let’s start by considering S1 ∨ S1 ∨ S2 vs. T2.

Both of these spaces have CW-complex structures with one 0-cell, two 1-cells, and one 2-cell. The
difference is that the 2-cell was attached via a homotopically trivial map in S1 ∨ S1 ∨ S2, while
it was attached via the the path aba−1b−1 in T2. While homotopically these are different, on the
level of homology they cannot be distinguished because H1 is the abelianization of the fundamental
group. Surprisingly, the difference can be detected in the cup product structure.

The homology of both of these spaces is

H∗(S1 ∨ S1 ∨ S2) ∼= H∗(T2) =


Z in dim 0

Z2 in dim 1

Z in dim 2

0 in higher dim

Because all of these groups are free, the Ext groups in the universal coefficient theorem are trivial,
and therefore the cohomology of both spaces is isomorphic to the homology.

What about the cup product structure on H∗? The only interesting case is in H1. We have that
H1 = Z2 = Hom(H1,Z) is generated by two 1-cocycles α and β, where α(a) = 1 and α(b) = 0, and
β(a) = 0 and β(b) = 1.

By the anti-commutativity of the cup product in odd dimensions, for either space we have α` α =
−(α` α) and β ` β = −(β ` β), and because H2 has no 2-torsion, this implies α` α = β ` β = 0
for either space.

What about α` β?

We map X = S1 ∨ S1 ∨ S2 down to Y = S1 ∨ S1 by collapsing the 2-cell to a point:

b

a

ba

f

X

Y

We have that

H∗(Y ) =


Z in dim 0

Z2 in dim 1

0 in higher dim
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Let γ, δ ∈ H1(Y ) be generators of H1(Y ) ∼= Z2. Clearly, γ ` δ = 0 because Y has no cohomology in
dimension 2. Because we have

f∗(γ)(a) = γ(f∗(a)) = α(a), f∗(γ)(b) = γ(f∗(b)) = α(b)

and similarly with δ and β, we can conclude that

0 = f∗(0) = f∗(γ ` δ) = f∗(γ)` f∗(δ) = α` β.

Now let’s look at T2. The lines a and b represent homology classes which will generate H1(T2), and
we will also draw lines a′ and b′ which will let us define the cocycles which are ‘‘dual’’ to [a] and [b].

a
b′

b

a′

We define cochains α, β by

α(σ) = (signed) # of intersections of a′,

β(σ) = (signed) # of intersections of b′.

σ

a′

+ − +

We claim that these cochains are actually cocycles. Looking at the intersections of a′ with the faces
of a 2-simplex,

0 2

1

+

+

+

++

−

+

−

−

−

and adding up all the signs on [01] + [12]− [02], by the classification of 1-manifolds we know there
are an even number of intersections and the sum must cancel.

Thus, α and β represent classes [α], [β] ∈ H1(T2). We have

[α]([a]) = 1, [α]([b]) = 0, [β]([a]) = 0, [β]([b]) = 1.
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Triangulating the torus, and drawing a′ and b′,

b′

a′

Recall that, by definition, we compute α` β by having α eat the front face of a triangle, and β eat
the back face, i.e. α(T01)β(T12). We will compute (α` β)[T2] by adding up the contribution from
all of the triangles in our triangulation.

However, in all but two triangles, there is no contribution because either a′ or b′ does not pass
through at all, so that α or β vanish. The only interesting piece is

0
0 1

1 2
2

b′

a′

−1

+1

We see that
([α]` [β])([T2]) = (−1) · [(+1)(−1)] + (+1) · [(0)(0)] = 1,

which isn’t 0, so the cup product structures on S1 ∨ S1 ∨ S2 and T2 are different.

Now let’s do a similar calculation for Sg, the closed oriented surface of genus g.

· · ·
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We know that

H∗(Sg) =


Z in dim 0

Z2g in dim 1

Z in dim 2

0 in higher dim

Taking inspiration from what we did with the torus, we define analogous curves a′1, . . . , a
′
g and

b′1, . . . , b
′
g on Sg, and then we define cocycles αi and βi which count the signed number of intersections

with a′i or b′i, respectively. Thus

αi(ai) = 1 βi(bi) = 1

αi(bj) = 0 for all j βi(aj) = 0 for all j

αi(aj) = 0 for all j 6= i βi(bj) = 0 for all j 6= i

To compute cup products, we choose a triangulation, so that the fundamental class [Sg] can be
represented by a sum of triangles. Then

([αi]` [βi])([Sg]) = 1, [αi]` [βj ] = 0, [βi]` [βj ] = 0, [αi]` [βj ] = 0 for i 6= j.

This is a non-degenerate, alternating (i.e. antisymmetric) pairing on H1 (such a form is called
symplectic). This is a general phenomenon - in even-dimensional manifolds, the cup product on
middle-dimensional cohomology gives a nice pairing to the top-dimensional cohomology (which is
just Z when it is orientable). If the dimension of the manifold is 0 mod 4, then the middle dimension
is even, and we get a symmetric form; if the dimension of the manifold is 2 mod 4, then the middle
dimension is odd, and we get an anti-symmetric form.

Let’s finish with RPn. So far, we’ve been working with 2-dimensional manifolds, so looking for
things that 1-dimensional submanifolds intersect with gave us other 1-dimensional submanifolds. In
general, we need to look at 1-codimensional submanifolds.

Because RPn is non-orientable, we can’t talk about the signed number of intersections, but we can
work in Z/2Z.

Viewing RPn as Dn/(±1 on ∂Dn), there are n different copies of RPn−1 in RPn, each perpendicular
to one of the coordinate axes. Choose one, which we will call a, and define α by

α(σ) = # of intersections of σ with a (mod 2)

In particular, α(γ) = 1 6= 0 (mod 2), where γ is the coordinate axis perpendicular to the chosen
copy of RPn−1.

γ

a
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We know that

H∗(RPn;Z/2Z) =

{
Z/2Z if 0 ≤ i ≤ n,
0 otherwise,

and because H∗(RPn;Z/2Z) = Hom(H∗,Z/2Z), the cohomology is the same as the homology.
Because H1(RPn,Z/2Z) = Z/2Z is a 1-dimensional vector space over Z/2Z, no matter which of the
n copies of RPn−1 we chose to define α with, we would get the same cohomology class in H1 (the
α1, α2, . . . are all different as cocycles, though).

Thus, (
[α1]` [α2]` · · ·` [αn]

)
[RPn] =

(
[α]` [α]` · · ·` [α]

)
[RPn] = 1,

and therefore
H∗(RPn;Z/2Z) = (Z/2Z)[α]/[α]n+1

where α is a degree 1 element. In fact,

H∗(RP∞;Z/2Z) = (Z/2Z)[α].
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Lecture 20 (2012-11-14)

Kunneth Theorem

Our goal is to compute H∗(X × Y ;R) in terms of H∗(X;R) and H∗(Y ;R). Recall that the product
X × Y comes with natural projections

X × Y

X Y

P2P1

Definition. The × product on cohomology, × : H∗(X;R)×H∗(Y ;R)→ H∗(X × Y ;R), is defined
by sending a× b to P ∗1 (a)` P ∗2 (b).

The map × is bilinear, and × induces a homomorphism of R-modules

Ψ : H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R).

In fact, we can make this into a homomorphism of graded rings by defining

(a ⊗ b) · (c ⊗ d) := (−1)|b||c|(ac ⊗ bd)

where |b| and |c| are the degrees of b and c.

Theorem (Kunneth). If X and Y are CW-complexes, and if H∗(Y ;R) is a free R-module, then Ψ
is an isomorphism.

Example. The cohomology ring of Tn over Z is

H∗(Tn,Z) ∼= Λ∗[x1, . . . , xn] =

n⊕
i=0

Λi[x1, . . . , xn]

where Λi[x1, . . . , xn] is the free abelian group on

{xi1 ∧ · · · ∧ xik | i1 < · · · < ik},

so that rank(Λi[x1, . . . , xn]) =
(
n
i

)
.

Proof. We induct using Kunneth:

H∗(Tn,Z) ∼= H∗(Tn−1 × S1;Z) = H∗(Tn−1)⊗H∗(S1).

For example,

H3(T4) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3

= [H3(T3)⊗H0(S1)]⊕ [H2(T3)⊗H1(S1)]⊕ [H1(T3)⊗H2(S1)]⊕ [H0(T3)⊗H3(S1)]

= [Z⊗ Z]⊕ [Λ2Z3 ⊗ Z]⊕ 0⊕ 0

= Z⊕ Λ2Z3.

When Ψ is an isomorphism, we have

Hn(X × Y ;Z) =
⊕
p+q=n

[Hp(X)⊗Hq(Y )].

In Hodge theory, we see that there is a decomposition like this even when we’re not looking at a
product manifold.
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Prologue to Poincaré duality

Definition. A second countable, Hausdorff space M is an n-dimensional manifold (possibly wth
boundary) if for any m ∈M , there is a neighborhood Um such that either Um ∼= Rn ∼= Bn (the open
ball in Rn), or Um ∼= Rn+ = {(x1, . . . , xn) | xi ≥ 0} (the closed upper half space). Key fact:

{m ∈M for which the latter holds} ∼= an (n− 1)-dimensional manifold ∂M.

Definition. A compact manifold M is called triangulable if there is a simplicial complex K ∼= M .
Most of the manifolds which occur in real life are triangulable, and we might as well assume that
all manifolds we’ll use in class will be triangulable.

Definition. An orientation on a simplex [v0 · · · vn] is a choice of one of the two equivalence classes
of (n+ 1)-tuples (vi0 · · · vin), where two (n+ 1)-tuples are equivalent when the permutation sending
one to the other is an even permutation.

Definition. M is orientable if one of the following equivalent statements holds.

1. There is a triangulation on M which can be oriented compatibly.

2. All triangulations on M can be oriented compatibly.

We know that under any reasonable definition, a disk ought to be orientable; giving the disk a
triangulation and assigning the same orientation to each simplex, we get

ö
ö

This motivates the definition of compatible orientation to be a choice of orientation on each n-simplex
σi such that if σi ∩ σj is a (codimension 1) face of each, then σi and σj induce opposite orientations
on that face.

Exercise.

1. Prove that Σg is orientable for all g ≥ 1.

2. Prove that the Mobius strip and Klein bottle are not.

3. How about RPn?

Theorem (Poincaré duality). Let M be a closed (i.e. compact, with no boundary), orientable
manifold of dimension n. Then

H i(M ;R) ∼= Hn−i(M ;R).

Corollary. If M is a closed manifold of odd dimension, then χ(M) = 0.

Proof of corollary. Let bi = dim(Hi(M ;R)). Then we know bi = dim(H i(M ;R)) by the universal
coefficient theorem, but by Poincaré duality bi is also equal to dim(Hn−i(M ;R)). Thus

χ(M) = b0 − b1 + b2 − · · · − b2k+1

cancels out, because b0 = b2k+1, b1 = b2k, etc.
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Lecture 21 (2012-11-16)

Another Corollary of Poincaré Duality

Here is a useful algebraic fact: any non-degenerate skew-symmetric bilinear form on Zn is, after
changing basis, of the form J . . .

J


where J =

(
0 −1
1 0

)
. In particular, n must be even. This fact, together with Poincaré duality, imply

Corollary. Let M be a closed, oriented, (4k + 2)-dimensional manifold. Then because we have a
non-degenerate pairing Hn−i(M)×H i(M)→ Z, rank(H i(M,Z)) = χ(M) must be even.

Continued Prologue to Poincaré duality

If M be a closed, orientable n-manifold, then Hi(M ;Q) ∼= Hn−i(M ;Q). Poincaré’s idea about this
was as follows: in a ∆-complex, we compute Hi using C∆

i (M). We can build a ‘‘dual’’ CW-complex
(it won’t be a ∆-complex in general, we may get a polygonal complex) by putting a 0-cell in the
center of every n-simplex, adding a 1-cell connecting two n-simplices if they meet on a codimension
1 subface, etc.

Thus, ∂ ←→ δ is an isomorphism
C∆
i (X) ∼= CCW

n−i(X
′).

Thus, {C∆
i (X), ∂} computes Hi(X) ∼= Hi(M), and {C∆

n−1(X), δ} computes Hn−i(X ′) ∼= Hn−i(M).

Classification of Surfaces

Theorem 0.1. Let M be a closed 2-manifold. Then M is homeomorphic to one of:

• Σg where g ≥ 0 (when M orientable), or

• Σg # RP2 (when M non-orientable).

Theorem 0.2 (2-dimensional Poincaré conjecture). The following are equivalent:

1. χ(M) = 2

2. M ∼= S2

3. Every loop γ ⊂M (i.e. embedding γ : S1 →M) separates M into 2 components,
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Statement 2 implies statement 3 by the Jordan separation theorem, and we already know that
statement 2 implies statement 1.

We will be assuming the following classical result:

Theorem (Rado, 1920’s). Every surface is triangulable.

Proof of Theorem 2. We will show that statement 1 implies statement 2. Let K be a triangulation
of M . First, pick a maximal tree T in K(1). Note that T ⊃ K(0).

Now build a connected graph Γ ⊂ K as follows: V (Γ) consists of the 2-simplices of K, and E(Γ)
consists of K(1) − T (0).

Here is an example on a tetrahedron:

We have

χ(M) = V (K)− E(K) + F (K)

= V (T )− (E(T ) + E(Γ)) + V (Γ)

= [V (T )− E(T )] + [V (Γ)− E(Γ)]

= χ(T )︸ ︷︷ ︸
≤ 1

+χ(Γ)︸︷︷︸
≤ 1

≤ 2,

where we have used the following lemma.

Lemma. Let Ω be a finite connected graph. Then χ(Ω) ≤ 1 with equality if and only if Ω is a tree.

Proof of lemma. Trivial application of induction (check for yourself).

Thus, we have that χ(M) ≤ 2, with equality if and only if χ(T ) = χ(Γ) = 1, which is the case if and
only if Γ is a tree. But if T ⊂M is a tree, there is a neighborhood of T homeomorphic to D2. Being
very careful, we can thicken Γ and T to neighborhoods each homeomorphic to D2, and such that

nbhd(T ) ∩ nbhd(Γ) ∼= S1 = ∂D2
1 = ∂D2

2.

This implies that M ∼= S2.

Now, note that statement 3 implies that Γ is a tree: if it weren’t, it would have a loop γ, and γ
would have to separate M ; but then it would separate two vertices of K(0), which would contradict
that Γ ∩ T = ∅.

Thus, statement 3 implies statement 1.

Proof of Theorem 1. We are given M , which has χ(M) ≤ 2 by the above.
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Does
χ(M) =

2 ?

Yes
M ∼= S2

No

∃ a loop γ in M that
does not separate M

A neighborhood of γ is homeomorphic to either S1 × [0, 1] or the Möbius strip (the latter is only
possible if M is not orientable).

γ

cut

γ2

γ1

M1

M2

Let M ′ be M1 with γ1 and γ2 filled in by disks. Thus, M ′ is a new closed, connected surface, and

χ(M) = χ(M1) + χ(M2)− χ(S1 t S1).

It is easy to check that χ(M ′) > χ(M); in fact, χ(M ′) = χ(M) + 2.
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Lecture 22 (2012-11-19)

The Mayer-Vietoris Argument

Definition. An open cover {Ui} of an n-manifold M is a good cover if each Ui ∼= Rn and for all
i1, . . . , ir, Ui1 ∩ · · · ∩ Uir ∼= Rn or is empty.

Theorem. Every smooth manifold M has a good cover. Of course, if M compact, then we can
choose the good cover to be finite.

Proof. First, we will prove that any smooth manifold M admits a Riemannian metric. Take a cover
of M by coordinate patches Ui, and on each coordinate patch, let 〈 · , · 〉i be the pullback of the
standard Riemannian metric on Rn. Let Pi be a partition of unity subordinate to the cover. Then
〈 · , · 〉 =

∑
Pi〈 · , · 〉i is a Riemannian metric on M .

Now we appeal to a theorem of Whitehead (or Alexander): if M is any Riemannian manifold, then
every m ∈M has a convex neighborhood Um, where convex means that there is a unique geodesic
in Um between any two points. Because the intersection of convex sets is convex, and convex ∼= Rn,
we are done.

Remark. Good covers are cofinal in the set of covers ordered by refinement.

Theorem. If a manifold M has a finite good cover, then the ith homology Hi(M) of M is finitely
generated for all i ≥ 0.

Proof. Mayer-Vietoris implies that for open U, V ⊆M , we have an exact sequence

· · · Hi(U)⊕Hi(V ) Hi(U ∪ V ) Hi−1(U ∩ V ) · · ·

Thus, by the rank-nullity theorem,

dim(Hi(U ∪ V )) ≤ dim(Hi−1(U ∩ V )) + dim(Hi(U)) + dim(Hi(V )),

where dim here means the minimial number of generators.

If U1, . . . , Ur is a good cover, then U = U1 ∪ · · · ∪ Ur−1 is an open submanifold of M , and we can
let V = Ur. By induction on the size of a minimal open cover, we have that Hi(U) and Hi(V ) are
finitely generated, and thus we are done by our observation above.

The base case is just M = Rn which is trivial.

Künneth theorem via a Mayer-Vietoris argument

Theorem. Let H∗(X) = H∗(X;Q). Then for any manifolds M1,M2 with finite good covers (in
fact we only need one of them to have this), we have

H∗(M1 ×M2) ∼= H∗(M1)⊗H∗(M2).

Proof. We will show the map ψ : H∗(M1)⊗H∗(M2)→ H∗(M1 ×M2) defined by sending a ⊗ b to
a× b is an isomorphism.

Let U1, . . . , Ur be a good cover of M . We induct on r.

For r = 1, since Rn ×M2 'M2, we have H∗(M2) ∼= H∗(Rn ×M2) ∼= H∗(R)⊗H∗(M2).
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Now suppose that {U, V } is a cover of M1. Mayer-Vietoris implies that we have a long exact
sequence

· · · H i(U ∩ V ) H i(U)⊕H i(V ) H i(U ∩ V ) · · ·

Tensoring with Hn−i(M2) throughout (?), we get

· · · H i(U ∩ V )⊗Hn−i(M2) (H i(U)⊕H i(V ))⊗Hn−i(M2) H i(U ∩ V )⊗Hn−i(M2) · · ·

which is still exact because tensoring with a vector space preserves exactness.

Summing the above exact sequence over all i, we get an exact sequence

· · ·
n⊕
i=1

[H i(U ∪ V )⊗Hn−i(M − 2)]︸ ︷︷ ︸
nth degree of H∗(U∪V )⊗H∗(M2)

· · ·

which ψ maps to

· · · Hn((U ∪ V )×M2) · · ·

Check that ψ forms a chain map between these two exact sequences, and use the 5 lemma. (?)

Orientation Revisited

Let x ∈ Rn, and let B be a neighborhood of x. We have

Hi(Rn,Rn − {x}) ∼=
↑

excision

Hi(Rn,Rn −B)

∼= H̃i(Rn/(Rn −B))

∼= H̃i(B/∂B)

∼= H̃i(Sn)

∼=

{
Z if i = n,

0 otherwise.

Now let M be a manifold. For any x ∈M , we can find a neighborhood B of x lying in a coordinate
chart. By the same reasoning,

Hi(M,M − {xi}) ∼= Hi(B,B − {x})

∼=

{
Z if i = n,

0 otherwise.

A choice of generator of Hn(M,M − {x}) ∼= Z is called a local orientation at x.

Now let M be a triangulated, closed, and connected n-manifold for which there exists a compatible
orientation on each simplex of the triangulation. Let {σi} be the set of n-simplices, and let
σ =

∑
σi ∈ Cn(M); this sum makes sense because M is compact, so there are finitely many terms.
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Because M is a manifold without boundary, and the orientations on σi ∩ σj cancel, we have that
∂σ =

∑
∂σi = 0. Thus, σ ∈ Zn(M). But Cn+1(M) = 0 because M is n-dimensional; therefore,

[σ] ∈ Hn(M) is of infinite order. This homology class is called the fundamental class of M , and is
denoted [M ].

Corollary. The Klein bottle K is not orientable since H2(K) = 0.

Check for yourself that for any x ∈M , the inclusion map i : (M,∅) ↪→ (M,M − x) induces a map
i∗ : Hn(M)→ Hn(M,M − x) that takes a generator to a generator.
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Lecture 23 (2012-11-21)

Poincaré Duality

Definition. Let X be a space. The cap product is a pairing between certain homology groups and
cohomology groups of X. For k ≥ `, we define a : Ck(X)×C`(X)→ Ck−`(X) by taking σ ∈ Ck(X),
a singular k-chain σ : [v0 · · · vk]→ X, and φ ∈ C`(X), a singular `-cochain, and mapping them to

σ a φ = φ(σ|[v0···v`])σ|[v`+1···vk].

It is easy to check the following properties:

• a is bilinear

• ∂(σ a φ) = (−1)`(∂σ a φ− σ a δφ)

• a(Zk × Z`) ⊆ Zk−`, i.e. cyclea cycle = cycle

• a(Bk × Z`) ⊆ Bk−`, i.e. boundarya cycle = boundary

These facts imply that the cap product descends to a bilinear map a : Hk(X)×H`(X)→ Hk−`(X).

Theorem (Poincaré Duality). Let M be a closed, oriented n-manifold. Then for any 0 ≤ i ≤ n,
the map DM : H i(M)→ Hn−i(M) is an isomorphism, where DM is defined by

DM ([φ]) = [M ]a [φ].

Corollary. The top homology group Hn(M) is isomorphic to Z, and [M ] is a generator.

Proof idea. We want to use a Mayer-Vietoris argument, but there’s an immediate problem: the
base case is false!

Hn(Rn) = 0 6∼= Z = H0(Rn).

To overcome this, we define Hn
c (M), cohomology with compact support, which will satisfy

Hn
c (M) ∼= Hn(M) for M compact

H i
c(Rn) ∼=

{
Z if i = n,

0 otherwise.

Then we prove, using a Mayer-Vietoris argument, for all (not-necessarily-compact) connected,
oriented manifolds Y without boundary that the map

DY : H i
c(Y )→ Hn−i(Y )

is an isomorphism, and then finally, extend a to the non-compact case.

Cohomology with Compact Support

Let X be a locally finite ∆-complex. Define Cic(X;R), the i-cochains with compact support, to be

Cic(X;R) := {φ | φ = 0 outside a finite # of simplices} ⊆ Ci(X;R) := Hom(Ci(X), R).

Clearly, δ(Cic) ⊆ Ci+1
c , so that ζ = {Cic(X), δ} is a cochain complex. We then define the cohomology

of X with compact support to be H i
c(X) := H i(ζ).

Note that H i
c is only a (contravariant) functor when considering proper maps between spaces.
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Example. Let’s consider X = R. We give it the following triangulation:

Then C0(R;Z) just consists of the functions on R, and given φ ∈ C0(R;Z), we have δφ = 0 only if
φ(v) = φ(w) for all w, v ∈ R, i.e. φ is constant. Therefore, if φ ∈ C0

c (R), we must have φ = 0. Thus
Z0
c (R) = 0, and thus H0

c (R) = 0.

Now we claim that H1
c (R;Z) ∼= Z. Let Σ : C1

c (R)→ Z be the map sending φ to
∑

e∈X(1) φ(e). Then
for any ψ ∈ C0

c (R), we have
δψ[i, i+ 1] = ψ(i+ 1)− ψ(i),

so that Σ(δψ) = 0. Therefore, Σ induces a homomorphism Σ : H1
c (R)→ Z. It is easy to check that

Σ is a bijection, and therefore H1
c (R;Z) ∼= Z.

Note that {K ⊆ X | K compact} is a poset under inclusion. We obviously have that K ⊆ L implies
X −K ⊇ X − L, so for any inclusion K ⊆ L, we get a map H i(X,X −K)→ H i(X,X − L), and
this gives us directed system of abelian groups.

Theorem. For any space X,
H i
c(X) ∼= lim−→

K

H i(X,X −K).

Proof. Do on your own.

It turns out that there is a relative fundamental class [(M,M −K)] ∈ Hn(M,M −K), where M is
an n-manifold. We can extend a to Hk(X,A)×H`(X,A)→ Hk−`(X,A), and then use the above
theroem to define

a : Hk(X)×H`
c(X)→ Hk−`(X).

Proposition. The cohomology with compact support of Rn is

H i
c(Rn;Z) ∼=

{
Z if i = n,

0 otherwise.

Proof. Let Kr = B0(r). We get an increasing sequence of compact sets, K1 ⊂ K2 ⊂ · · · , and hence
a decreasing sequence X −K1 ⊃ X −K2 ⊃ · · · . This is a cofinal sequence in the poset mentioned
above. Because

H i(Rn,Rn −B0(r)) ∼=

{
Z if i = n,

0 otherwise

and all of the maps in the directed system are the identity, we will get the same thing when we
take the algebraic limit.
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Lecture 24 (2012-11-26)

Today we’ll be talking about the fundamental group. It may seem like it would be similar to
homology, but in homology, we only deal with abelian / linear things, whereas the fundamental
group is usually non-abelian.

The Fundamental Group

We start by considering maps from [0, 1] to X. If α, β : [0, 1]→ X satisfy α(1) = β(0), then we can
define their composition (a ∗ b) : [0, 1]→ X by

(a ∗ b)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2 ,

β(2t− 1) if 1
2 ≤ t ≤ 1.

We define a ‘‘path’’ to be a map from [0, 1] to X, with the endpoints treated specially. We define
two paths to be homotopic when they are homotopic rel their endpoints.

Thus, if α and β are paths with α(0) = β(0) and α(1) = β(1), then we say α ∼ β when there is some
homotopy F : [0, 1]2 → X such that F0 = α, F1 = β, Ft(0) = α(0) = β(0), and Ft(1) = α(1) = β(1).

Now we’ll prove this is an equivalence relation.

For any path a, we have a ∼ a because we can define a homotopy as follows (imagine time progresses
as one goes bottom to top; this homotopy is constant on the gray lines):

α

α

α(0) α(1)

Suppose α and β are paths with α(0) = β(0) and α(1) = β(1), such that α ∼ β (say, via a path
homotopy F : [0, 1]2 → X from F0 = α to F1 = β). Then we have β ∼ α, because we can define
a path homotopy G : [0, 1]2 → X from G0 = β to G1 = α simply as Gt(s) = F1−t(s). Pictorally,
(again, imagine time progresses as one goes from bottom to top):

F

β

α

α(0) α(1)

= =

β(0) β(1)

F G

α

β

β(0) β(1)

= =

α(0) α(1)
F

Lastly, if α, β, γ are paths with α(0) = β(0) = γ(0) and α(1) = β(1) = γ(1), such that α ∼ β and
β ∼ γ via homotopies F : [0, 1]2 → X from F0 = α to F1 = β and G : [0, 1]2 → X from G0 = β to
G1 = γ, we have α ∼ γ because we can define a homotopy H : [0, 1]2 → X from H0 = α to H1 = γ
by

Ht(s) =

{
F2t(s) if 0 ≤ t ≤ 1

2 ,

G2t−1(s) if 1
2 ≤ t ≤ 1.
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Pictorally,

F

β

α

α(0) α(1)

= =

β(0) β(1)

F G

β

γ

γ(0) γ(1)

= =

β(0) β(1)

G

H
β

γ

α

α(0) α(1)
= =

γ(0) γ(1)

F

G

Note also that if α ∗ α′ and β ∼ β′, then we also have (α ∗ β) ∼ (α′ ∗ β′):

α′ β′

α β

α(0) β(1)

= =
α′(0) β′(1)

F G

If [α] denotes the equivalence class of α with respect to ∼, then this demonstrates that ∗ descends
to an operation on equivalence classes, i.e. [α ∗ β] = [α] ∗ [β].

Moreover, ∗ is associative (when ∗ is defined) because there is a homotopy

α β γ

α β γ

α(0) γ(1)

α ∗ (β ∗ γ)

(α ∗ β) ∗ γ

There are also ‘‘identities’’ for ∗ (be careful, because ∗ is only defined for paths whose endpoints are
the same). We define 1p to be the constant map from [0, 1] to p ∈ X. Then 1α(0) ∗ α = α because
there is a homotopy
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1α(0) α

α

α(0) α(1)

and similarly α ∗ 1α(1) = α.

Lastly, there are inverses. If γ is a path, we define γ−1 to be the same path but with the opposite
orientation, i.e. γ−1(t) = γ(1− t). Then γ ∗ γ−1 = 1γ(0), because there is a homotopy

γ γ−1

1γ(0)

γ(0) γ(0)

(it is constant on the gray lines), and similarly with γ−1 ∗ γ = 1γ(1).

A structure satisfying these properties is called a groupoid. It is the same as a group, except there
are some elements which may not be able to be composed.

Thus, given any space X gives rise to a groupoid, called the fundamental groupoid of X. The
construction of this groupoid didn’t favor any point in X over any other, but if we break the
symmetry a bit and choose some point x ∈ X to be our basepoint, then we can define a group as
follows: let π1(X,x) be the set of equivalence classes of paths α : [0, 1]→ X which both start and
end at x, i.e. α(0) = α(1) = x. Then π1(X,x) forms a group under the operation ∗, and the identity
of π1(X,x) is just 1x. (Note that we usually want to assume X is connected.) We say that π1(X,x)
is the fundamental group of X with basepoint x.

How does π1(X,x) depend on our choice of x?

Given two points x and y, choosing a path γ from x to y determines a homomorphism from π1(X,x)
to π1(X, y) by sending [α] to [γ−1 ∗ α ∗ γ]. In fact, it is easy to see that it must be an isomorphism
(take γ−1 as a path from y to x). If x = y, then this isomorphism is just the inner automorphism
that is conjugation by [γ], because [γ−1 ∗ α ∗ γ] = [γ−1] ∗ [α] ∗ [γ].

Thus, we often say somewhat loosely that a group is ‘‘the’’ fundamental group of a space X, even
though the isomorphism is only determined up to inner automorphism. At any rate, the isomorphism
class determined.

We also want π1 to be functorial. Given a map f : X → Y and α : [0, 1]→ X, then (f ◦α) : [0, 1]→ Y
is a path in Y , so we get a map f∗ sending paths in X to paths in Y , which is compatible with ∼
because f will also map any homotopy:
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α′

α

α(0) α(1)F

f

f ◦ α′

f ◦ α

(f ◦ α)(0) (f ◦ α)(1)f ◦ F

and moreover f∗ is compatible with ∗. Thus, f∗ induces a homomorphism of groupoids, and if we
choose basepoints, we get a map f∗ : π1(X,x)→ π1(Y, f(x)).

If f and f ′ are maps from X to Y both sending x to the same point, and f ' f ′ rel x (i.e. there
is a homotopy F : X × [0, 1] → Y such that Ft(x) = f(x) = f ′(x)), then the induced maps
f∗ : π1(X,x) → π1(Y, f(x)) and f ′∗ : π1(X,x) → π1(Y, f(x)) are in fact the same, because the
homotopy F between f and f ′ gives us, for any loop α in X based at x, a homotopy

f ′ ◦ α

f ◦ α

f(x) f(x)F ◦ α

If f : X → Y is a homotopy equivalence, then f∗ : π1(X,x) → π1(Y, f(x)) is an isomorphism.
We can see this as follows. Let g be the homotopy inverse of f , so that there is a homotopy
F : X × [0, 1]→ X such that Ft(0) = (g ◦ f) and Ft(1) = idX . Let γ keep track of what F does to
x, so that γ : [0, 1]→ X is a path starting at (g ◦ f)(x) and ending at x. Then the composition

π1(X,x) π1(Y, f(x)) π1(X, gf(x)) π1(X,x)
f∗ g∗ γ∗

is the identity map. Pictorally, we get immediately from our setup a homotopy (note that the left
and right edges are not constant here, i.e. this is not a path-homotopy)

gf(α)

α

γ γF ◦ α

which we can then deform into a nice path-homotopy by shrinking the left and right edges onto the
top, leaving the left and right sides to be mapped constantly to α(0):
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gf(α)

α

α(0) α(0)

γ γ

In summary, for a connected space X with basepoint x, then π1(X,x) is a group, consisting of the
homotopy calsses of paths based at x rel endpoints, with ∗ as the operation. Changing the basepoints
gives isomorphic groups. Maps f : X → Y induce homomorphisms f∗ : π1(X,x) → π1(Y, f(x)).
Homotopic maps induce the same homomorphism, and homotopy equivalences induce isomorphisms.
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Lecture 25 (2012-11-28)

Recall that if X is a path-connected topological space and x0 ∈ X, then π1(X,x0) is the fundamental
group of X with basepoint x0. It consists of homotopy classes (rel endpoints) of loops α : [0, 1]→ X
satisfying α(0) = α(1) = x0. The group operation is ∗.

Theorem. If f : X → X is a homotopy equivalence, then π1(X,x0)
f∗−−→ π1(Y, f(x)) is an

isomorphism.

Example. We know that R2 ' pt, so π1(R2, (0, 0)) ∼= π1(pt,pt) = 1.

Today, we’ll compute π1(S1, 1), and introduce covering spaces.

Are these two loops equivalent in π1(S1, 1)?

No; they go around different numbers of times. It’s clear intuitively that π1(S1, 1) ∼= Z. But how
can we prove this?

The right way to think about S1 is as R/Z, under the quotient p : R→ S1 defined by p(t) = e2πit.

p

S1

R

Note that we can ‘‘lift’’ paths in S1 up to R, as long as we have specified where to start.

Theorem. For any α : [0, 1]→ S1 with α(0) = x0, and any choice of x̃0 ∈ p−1(x0), then there is a
unique α̃ : [0, 1]→ R with p ◦ α̃ = α and α̃(0) = x̃0.

R

S1

pα̃

α

Proof. We can cover S1 by open U , V like this:
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VU

Let {Ui}, {Vi} be the connected components of p−1(U) and p−1(V ), respectively.

R

Note that, for each Ui and Vi, the maps p|Ui : Ui → U and p|Vi : Vi → V are all homeomorphisms,
so at least locally, there are lifts; indeed for any space Z and any map f : Z → U , there is a unique
lift f̃ , i.e. a map such that p ◦ f̃ = f .

Ui

Z U

p
f̃

f

Now pull back U and V under α to cover [0, 1] (which has a finite subcover because it is compact).

Thus, α breaks into subpaths αi, with αi : [vi−1, vi] → U (or V ). Therefore, there is a unique
lift α̃1 : [0, v1] → Ui ⊆ R, where this is the unique Ui containing x̃0. Then there is a unique lift
α̃2 : [v1, v2]→ Vj ⊆ R such that α̃2(v1) = α̃1(v1). We then proceed inductively.

Thus, we’ve shown that we can lift paths. We can also lift homotopies:

Theorem. For any Hs(t) : [0, 1]2 → S1 such that H0(0) = x0, and any choice of x̃0 ∈ p−1(x0),
there is a unique lift H̃s(t) : [0, 1]2 → R such that H̃0(0) = x̃0 and p ◦ H̃ = H.

Proof. Break [0, 1]2 into squares small enough to guarantee that each maps into either U or V , and
lift each square inductively in the same way as our earlier proof.

p

S1

R

[0, 1]2
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Now let’s get back to π1(S1, 1). Define γn : [0, 1]→ S1 by γn(t) = e2πint.

· · · · · ·

Note that the unique lift γ̃n with γ̃n(0) = 0 is

0 000
· · · · · ·

Define Φ : Z→ π1(S1, 1) by Φ(n) = [γn].

Theorem. The map Φ is an isomorphism.

Proof. First, let’s show that Φ is surjective. Given [α] ∈ π1(S1, 1), by our earlier theorem, there is
a unique lift α : [0, 1] → R with α̃(0) = 0. Then α̃(1) ∈ p−1(1) = Z, so α̃(1) = n for some n ∈ Z.
Obviously, we are going to want to define a homotopy between α and γn.

Define H : [0, 1]2 → R by Hs(t) = snt+ (1− s)α̃(t). Note that

H0(t) = α̃(t), H1(t) = nt = γ̃n(t), Hs(0) = 0, Hs(1) = n.

Thus, p ◦H is a homotopy α ∼ γn, so [α] = [γn].

Now we’ll show that Φ is injective. Suppose that [γm] = [γn], so that there is some H : [0, 1]2 → S1

such that
H0(t) = γn(t), H1(t) = γm(t), Hs(0) = 1, Hs(1) = 1.

1

1

γn γm

We lift this H to H̃ : [0, 1]2 → R, with H̃0(0) = 0. Then we have H̃0(t) = γ̃n(t) and H̃1(t) = γ̃m(t),
and note that H̃s(0) and H̃s(1) have to always map into p−1(1) = Z, and therefore they must be
constant. Thus,

m = γ̃m(1) = H̃1(1) = H̃0(1) = γ̃n(1) = n.

Definition. If X̃ and X are topological spaces, we say that the map p : X̃ → X is a covering
map when there is an open cover {Vi} of X such that p|U is a homeomorphism for any connected
component U of p−1(Vi), for any Vi. We say that X̃ is a covering space of X.
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Lecture 26 (2012-11-30)

Recall that last time, we proved that π1(S1) ∼= Z, and introduced covering spaces.

Free products of groups

Definition. Let G and H be groups. We define G ∗ H to be the group generated by G and H,
with no extra relations; thus,

G ∗H = {g1h1 · · · gkhk | gi ∈ G, hi ∈ H},

and concatenation of words is the group operation. It is a theorem that G ∗H is in fact a group;
associativity is the only tricky part. We can also define, for any collection of groups Gα, their free
product∗αGα.

Example. The free group on S = {s1, . . . , sn} is just Z ∗ · · · ∗ Z, with one copy of Z for each si.

Theorem (Universal property of free products). For any collection {Gα} of groups and homomor-
phisms {φα : Gα → H}, there is a unique homomorphism φ :∗αGα → H such that φ(g) = φα(g)
for any g ∈ Gα for all α.

Recall that we specify a presentation of a group as

G = 〈g1, . . . , gk︸ ︷︷ ︸
relations

| r1, . . . , rm︸ ︷︷ ︸
relations, i.e.

words in the gi

〉.

What this really means is
G = F ({g1, . . . , gk})/〈〈r1, . . . , rm〉〉,

where 〈〈 · 〉〉 denotes the normal subgroup generated by a set. Note that we need to use this normal
closure because if b is a relation we want to kill, we also need to kill aba−1.

Free products with amalgamation

Suppose we have (not necessarily injective) group homomorphisms as follows:

A1

H

A2

i1

i2

Then A1 ∗H A2, the free product of A1 and A2 along H, is defined to be

A1 ∗H A2 = A1 ∗A2/〈〈{i1(h)i2(h)−1 | h ∈ H}〉〉.

The van Kampen theorem

Suppose that X =
⋃
αAα, where each of the Aα are path connected and open, and where there is

some x0 ∈
⋂
αAα. For example, we might have
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A1

A2

A3

x0

For any α and β, we have a commutative diagram of topological spaces

Aα

Aα ∩Aβ X

Aβ

jαiαβ

iβα jβ

which induces a commutative diagram of fundamental groups (all with respect to the basepoint x0):

π1(Aα)

π1(Aα ∩Aβ) π1(X)

π1(Aβ)

jαiαβ

iβα jβ

Clearly, we have that jα∗(iαβ∗([γ])) = jβ∗(iβα∗([γ]). There is a map Φ : ∗α π1(Aα) → π1(X)
induced by taking the jα∗ together.

Theorem (van Kampen). With this notation, if Aα ∩ Aβ is path connected for any α, β, then
Φ is surjective. If Aα ∩ Aβ ∩ Aγ is path-connected for any α, β, γ, then ker(Φ) is generated by
iαβ∗([γ])iβα∗([γ])−1 for any loop γ ∈ Aα ∩Aβ.

Theorem (Simpler version). Suppose that X = A1 ∪A2 such that A1 ∩A2 is path-connected. Then

π1(X) ∼= π1(A1) ∗π1(A1∩A2) π1(A2).

Sketch of proof.
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A1

A2

A3

g1g2

g3

α1

α2

α3

α1 α2 α3

α

First, let’s prove that Φ is surjective. Given [α] ∈ π1(X), pull back the open cover Aα via α (terrible
notation!) and split the loop α into subpaths αi, each of which maps into some Aα.

Now rewrite this as

α1 α2 α3g1 g−1
1 g2 g−1

2 g3 g−1
3 · · ·· · ·

∈ π1(A1) ∈ π1(A2) ∈ π1(A3)

Now, let’s try to understand the kernel ker(Φ). Given two elements of∗α π1(Aα) which are sent
to the same thing in π1(X), say

[f1] · · · [fk] = [f ′1] · · · [f ′m] ∈ π1(X).

Then we have
[f1 · · · fk] = [f ′1 · · · f ′m] ∈ π1(X),

and we want to show that we can get from [f1 · · · fk] to [f ′1 · · · f ′m] by

1. combining [fi][fi+1] = [fifi+1] if fi, fi+1 ∈ Aα, or

2. taking [fi] to be in either π1(Aα) or π1(Aβ) if [fi] ∈ π1(Aα ∩Aβ).

We can create a homotopy from f1 · · · fk to f ′1 · · · f ′m by dividing up [0, 1]2 into a grid such that, as
we pass over each line in the grid, we are using either operation 1 or operation 2.

f ′1 · · · f ′m

f1 · · · fk

x0 x0 X
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Example.

• Let’s compute π1(Σ2), where Σ2 is the two-holed torus. Recall that we can write Σ2 as the
quotient of an octagon. We break up the octagon into two pieces, A1 and A2:

c

a

b

b
a

d

c

d

A2

A1

A1 '

We have
π1(Σ2) = (π1(A1) ∗ 1)/π1(A1 ∩A2) = 〈a, b, c, d〉/Z,

but we need to understand which Z. Looking at A1 ∩A2, we see that

π1(Σ2) = 〈a, b, c, d〉/[a, b][c, d].
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Lecture 27 (2012-12-03)

Theorem (Gordon-Luecke, 1980’s). Let K1,K2 be knots in R3. Then K1 is equivalent to K2, i.e.
there is a homeomorphism h : R3 → R3 with h(K1) = K2, if and only if π1(R3 \K1) ∼= π1(R3 \K2).

(warning: this is an incorrect statement of the theorem)

Comparing H1 and π1

Let Γ be any group. The commutator subgroup of Γ is defined to be

[Γ,Γ] = 〈{ghg−1h−1 | g, h ∈ Γ}〉.

Then Γ/[Γ,Γ] is abelian, and Γ/[Γ,Γ] ∼= Γab, where Γab is by definition the unique group satisfying
the following universal mapping property: for any abelian group A and homomorphism φ : Γ→ A,
there is a unique φ : Γab → A such that

Γ A

Γab

φ

π
φ

You proved the following theorem on the most recent homework:

Theorem. Let X be any path-connected space. Then the map φ : π1(X)→ H1(X,Z) defined by
φ([γ]) = γ∗([S1]) induces an isomorphism

φ : π1(X)/[π1(X), π1(X)]→ H1(X,Z).

Covering Spaces

Throughout, let X and Y be path-connected and locally path-connected spaces.

Definition. A map p : Y → X is a covering space when any x ∈ X has a neighborhood Ux
such that, for each xα ∈ p−1(x), there is a neighborhood Vα of xα such that p|Vα : Vα → Ux is a
homeomorphism, and Vα ∩ Vβ for α 6= β.

Example. A group action on X is just a subgroup Γ ⊂ Homeo(X). The action is discrete if, for all
x ∈ X, there is a neighborhood Ux of x such that for all g ∈ Γ \ {id}, gUx ∩Ux = ∅. You can check
that if Γ acts discretely on X, then the quotient X → X/Γ is a covering map.

To give explicit examples of this, we can take Γ ⊂ Homeo(R2) to be

Γ = 〈(x, y) 7→ (x+ 1, y), (x, y) 7→ (x, y + 1)〉,

in which case we get a covering map R2 → R2/Γ ∼= T2. We could also consider

Λ = 〈(x, y) 7→ (x, y + 1)〉,

in which case we get a covering map R2 → R2/Γ ∼= S1×R. Quotienting the rest of the way produces
a covering map S1 × R → T2. In fact, T2 covers itself; for any a, b ∈ Z2, the map which acts as
a degree a map on the first factor of T2 = S1 × S1 and as a degree b map on the second factor
produces a covering map T2 → T2.
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Note that there are lots of different covering maps of T2, and some of them cover others:

R2

T2

T2

S1 × [0, 1]

We can build a dictionary between the group theory of π1(X) and the covering space theory of X.
It is a Galois correspondence. Technically, we need to assume that X is path-connected, locally
path-connected, and semi-locally simply connected.

π1(X) ←→ X

subgroups H ⊆ π1(X) ←→ covering spaces p : Y → X
π1(X) ←→ id : X → X

{e} ←→ universal cover X̃ → X

H ⊂ π1(X) ←→ X̃/H → X
normal subgroups ←→ p : Y → X is regular

[π1(X) : H] ←→ #p−1(x), i.e. number of sheets
conjugacy classes of elements ←→ free homotopy classes of loops

Theorem. If Γ acts discretely on Y and π1(Y ) = 0, then π1(Y/Γ) ∼= Γ.

Example. We can cover the unit disk model of H2 with octagons, and act discretely on it by
Γ = 〈x, y, z, w〉 for some transformations x, y, z, w which identify the appropriate sides of the
octagons, and we get H2/Γ ∼= Σ2.

Example. If L(p, q) is the lens space for p and q, we can obtain it as S3/(Z/pZ).

Non-example. Let r ∈ R \Q, and let Z act on S1 by e2πiθ 7→ e2πi(θ+r). This action is not discrete,
and S1/Z is not even Hausdorff.

Non-example. Let Z/3Z act on D2 by rotations by 2π/3. This action is not discrete, though
it almost is - it would be discrete if we threw away the origin. This kind of situation is called a
branched cover.

Proposition. Let p : Y → X be a covering map. Then p∗ : π1(Y, y)→ π1(X, p(y)) is injective.

Proof. The idea is clear: if a loop p∗([γ]) is trivial in π1(X, p(y)), we can lift the homotopy to one
demonstrating that [γ] is trivial.
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Lecture 28 (2012-12-05)

Applications to Knots

Proposition. The trefoil knot is knotted.

Proof. We know that π1(S3−unknot) ∼= Z, but it is not too hard to show that Γ = π1(S3−trefoil) =
〈a, b | aba = bab〉. We claim that Γ is not isomorphic to Z. To see this, note that there is a surjection
f : Γ→ S3 (a non-abelian group), defined by a 7→ (12) and b 7→ (23), because these elements of S3

satisfy the relation aba = bab.

Let T (p, q) be the (p, q)-torus knot, i.e. the knot obtained by embedding the torus T2 in R3 in the
standard way and taking the curve on the torus that wraps around p times one way and q times
the other way.

Proposition. T (p, q) is equivalent to T (m,n) ⇐⇒ m = p and n = q, or m = q and n = p.

Proof. It turns out that Γ = π1(S3 − T (p, q)) = 〈a, b | apbq〉. Thus, ap commutes with both a
and b, so that ap ∈ Z(Γ), hence 〈ap〉 / Γ. It is easy to see that Γ/〈ap〉 ∼= Z/pZ ∗ Z/qZ, hence
(Γ/〈ap〉)ab ∼= Z/pZ× Z/qZ, which allows you to distinguish a lot of things.

Proposition. If p : Y → X is a cover with p(y) = x, then p∗ : π1(Y, y)→ π1(X,x) is an injection,
and p∗(π1(Y, y)) consists of those [γ] such that any lift of γ to Y is a loop.

Proof. The map sends γ to α = p ◦ γ, and if α is trivial in π1(X,x) there is some homotopy αt from
α to a constant map. Lifting this homotopy to Y gives a homotopy from γ to a constant map.

Proposition. Let p : Y → X be a covering map, with X,Y connected. Then #p−1(X) = [π−1(X) :
p∗(π1(Y ))].

Proof. Define ϕ : π1(X)/p∗(π1(Y ))→ {p−1(x)} by sending the coset of [γ] to γ(1). Show that this
map is bijective.

Note that π1(X) acts on the set p−1(x) via [γ] · y 7→ γ̃(1), where γ̃ is the lift of γ starting at y. For
example, π1(S1) acts on p−1(1) = Z ⊂ R by translations.

The stabilizer Stab(y) is conjugate to p∗(π1(Y )).

Definition. We say that two coverings p1 : Y1 → X and p2 : Y2 → X are isomorphic when there is
a homeomorphism f : Y1 → Y2 such that p2 = p1 ◦ f , i.e. f takes the set p−1

1 (x) to p−1
2 (x) for any

x ∈ X. For any covering p : Y → X, the group of deck transformations of p is just Aut(p : Y → X).

Example. The group of deck transformations of the covering R→ S1 is just Z, consisting of the
translations of R by integers.

As we mentioned before, there is a correspondence

{subgroups H ⊆ π1(X,x)} ←→ {coverings p : Y → X up to isomorphism}.

In particular, the trivial subgroup {e} corresponds to a simply-connected cover X̃ of X, called the
universal cover of X. You can look in Hatcher for details, but essentially X̃ consists of certain
equivalence classes of paths in X.

Looking at universal covers for graphs is good practice for the general case.
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Definition. A covering map p : Y → X is called a regular cover (a.k.a. normal cover) when for
all x ∈ X and y1, y2 ∈ p−1(x), there is a deck transformation h ∈ Aut(p : Y → X) such that
h(y1) = y2.

It turns out that p : Y → X is regular if and only if p∗(π1(Y )) / π1(X), i.e. for any h ∈ p∗(π1(Y ))
and g ∈ π1(X), we have ghg−1 ∈ p∗(π1(Y )). We can see this because ghg−1(g(y)) = gh(y) = g(y),
since h ∈ π1(Y ), so that ghg−1 ∈ Stab(g(y)) ∼= π1(Y, g(y)). This is a special case of a very important
general fact:

Fix(ghg−1) = gFix(h).

The exam will cover only the things we’ve done in class, but you should be sure to learn the lifting
criterion on your own.

Y

Z X

p?

f

can lift ⇐⇒ f∗(π1(Z)) ⊆ p∗(π1(Y ))

Last edited
2012-12-09

Math 317 - Algebraic Topology Page 74
Lecture 28


	Lecture 1 (2012-10-01)
	Lecture 2 (2012-10-03)
	Lecture 3 (2012-10-05)
	Lecture 4 (2012-10-08)
	Lecture 5 (2012-10-10)
	Lecture 6 (2012-10-12)
	Lecture 7 (2012-10-15)
	Lecture 8 (2012-10-17)
	Lecture 9 (2012-10-19)
	Lecture 10 (2012-10-22)
	Lecture 11 (2012-10-24)
	Lecture 12 (2012-10-26)
	Lecture 13 (2012-10-29)
	Lecture 14 (2012-10-31)
	Lecture 15 (2012-11-02)
	Lecture 16 (2012-11-05)
	Lecture 17 (2012-11-07)
	Lecture 18 (2012-11-09)
	Lecture 19 (2012-11-12)
	Lecture 20 (2012-11-14)
	Lecture 21 (2012-11-16)
	Lecture 22 (2012-11-19)
	Lecture 23 (2012-11-21)
	Lecture 24 (2012-11-26)
	Lecture 25 (2012-11-28)
	Lecture 26 (2012-11-30)
	Lecture 27 (2012-12-03)
	Lecture 28 (2012-12-05)

